
MultiUAV2 Simulation
Users Manual
Version 2.0

October 18, 2004

Contents

1 Background 1
1.1 Overview . 1
1.2 Implementation . 1
1.3 Using This Manual . 2

2 Getting Started 7
2.1 Setting-up the Simulation . 7
2.2 Running the Simulation . 7
2.3 The Graphical User Interface (GUI) . 8
2.4 Simulation Output . 8
2.5 Simulation Data Plot Window . 9

3 Embedded Flight Software (Managers) 13
3.1 Overview . 13

3.1.1 Redundant Central Optimization . 13
3.1.2 Sequence of Events . 13

3.2 Tactical Maneuvering Manager . 14
3.3 Sensor Manager . 16
3.4 Target Manager . 17
3.5 Cooperation Manager (Assignment Algorithms) . 19

3.5.1 Single Assignment Tour vs Multiple Tour Assignment 19
3.5.2 Capacitated Transhipment Network (Network Flow) (Single Task Tours) . . . 20
3.5.3 Iterative Network Flow (Multiple Task Tours) 20
3.5.4 Iterative Auction (Multiple Task Tours) . 21
3.5.5 Relative Benefits (Multiple Task Tours) . 21
3.5.6 Distributed Iterative Network Flow (Multiple Task Tours) 21
3.5.7 Distributed Iterative Auction (Multiple Task Tours) 21

3.6 Route Manager . 21
3.7 Weapons Manager . 23

4 Inter-Vehicle/Simulation Truth Communications 25
4.1 Overview . 25
4.2 Communication Requirements . 25
4.3 Implementation . 26

4.3.1 Sending Messages . 27
4.3.2 Receiving Messages . 33

iii

iv CONTENTS

4.4 Message Exchange Example . 34

5 Vehicle Dynamics Simulation 35
5.1 Overview . 35
5.2 Tactical Vehicle . 35
5.3 Variable Configuration Vehicle Simulation . 36
5.4 Sensor Footprint . 38

6 Modifications To The Simulation 39
6.1 Modifying Simulation Blocks . 39
6.2 Compiling the Simulation . 39

6.2.1 Microsoft Visual C++ for Windows . 40
6.2.2 Unix-like . 40

6.3 Debugging the Simulation . 41
6.4 Memory Types and Usage . 43

6.4.1 Output of Blocks . 43
6.4.2 Data Store Blocks . 43
6.4.3 Global Memory . 44

6.5 Directory Structure . 44
6.6 Procedures for Common Modifications . 44

6.6.1 Changing Number of Targets . 44
6.6.2 Changing Number of Vehicles . 44
6.6.3 Adding New Types of Vehicles/Targets . 44
6.6.4 Changing Targets Dynamics . 45
6.6.5 Adding a New Assignment Algorithm . 45
6.6.6 Changing Sensor Simulation . 45
6.6.7 Changing Sensor Footprint . 45
6.6.8 Changing Vehicle Dynamics . 45
6.6.9 Changing Initial Search Pattern . 46
6.6.10 Changing Simulation Sample Time . 46
6.6.11 Adding Communication Messages . 46

A M-Function Reference 49

B Global Variables Reference 53

C Global Structures Reference 57
C.1 Vehicle Memory (g VehicleMemory) . 57

C.1.1 Dynamics Structure . 57
C.1.2 Weapons Manager Structure . 57
C.1.3 Target Manager Structure . 58
C.1.4 Cooperation Manager Structure . 58
C.1.5 Route Manager Structure . 58
C.1.6 Sensor Manager Structure . 58

C.2 Vehicle Input Files Structures . 59
C.2.1 g VehicleInputFiles . 59
C.2.2 DATCOM Input Parameters . 59

CONTENTS v

C.2.3 Parameter Inputs . 59
C.3 Monte-Carlo Metrics (g MonteCarloMetrics) . 59
C.4 Entity Types (g EntityTypes) . 60
C.5 Color Structures . 60

C.5.1 g Colors . 60
C.5.2 g VehicleColors . 61

C.6 Target Structures . 61
C.6.1 Global Target Position Definitions (g TargetPositionDefinitions) 61
C.6.2 Target Main Memory . 61
C.6.3 Target Memory . 61
C.6.4 TargetStates . 62
C.6.5 TargetTypes . 62

C.7 Assignment Algorithm Structures . 63
C.7.1 g Tasks . 63
C.7.2 g TypeAssignment . 63
C.7.3 g AssignmentTypes . 63

C.8 Waypoint Structures . 63
C.8.1 g WaypointDefinitions . 63
C.8.2 g WaypointTypes . 64

C.9 Communication Message Structures . 64
C.9.1 g CommunicationMemory . 64
C.9.2 InBoxes . 65
C.9.3 Message Transport Type . 65
C.9.4 Communication Message Indices . 66
C.9.5 Communication Messages . 66

C.10 Simulation Truth Message Structures . 71
C.10.1 g TruthMemory . 71
C.10.2 InBoxes . 71
C.10.3 Message Transport Type . 71
C.10.4 Simulation Truth Message Indices . 71
C.10.5 Simulation Truth Messages . 72

Bibliography 76

vi CONTENTS

List of Figures

1.1 Top level block layout. 3
1.2 Layout of vehicle blocks. 4
1.3 Layout of target blocks. 5
1.4 Layout of blocks inside the vehicle. 6
1.5 Layout of blocks inside the target. 6

2.1 MultiUAV2 Directories. 8
2.2 MultiUAV2 ModelBrowser. 8
2.3 Graphical User Interface. 9
2.4 MultiUAV2 Plot Window. 10

3.1 MultiUAV2 Managers. 15
3.2 UAV team. 15
3.3 Angle definitions for ATR. 17
3.4 ATR template. 18
3.5 Target state transition diagram. 19
3.6 Geometry for trajectory calculation. 23

4.1 Overview of the message passing mechanisms. 27
4.2 Blocks used by the vehicles to send communication messages. 28
4.3 Block used to receive communication messages. 29
4.4 Blocks used by the vehicles to send simulation truth messages. 30
4.5 Block used to receive simulation truth messages. 31
4.6 Parameter selection for send truth messages block. 31
4.7 Parameter selection for send communication messages block. 32

5.1 VCVS Schematic. 38

6.1 Cooperation Library. 47

vii

viii LIST OF FIGURES

List of Tables

2.1 GUI buttons and their associated actions. 11
2.2 Simulation output, vehicle data. 12
2.3 Simulation output, target data. 12

4.1 Communication messages and their unique identifiers. 27
4.2 Truth messages and their unique identifiers. 27
4.3 InBoxes field description. 33

5.1 Parameters to the TacticalVehiclDLL S-function. 36
5.2 Simulink inputs to the TacticalVehiclDLL S-function. 36
5.3 Matlab inputs to the TacticalVehiclDLL S-function. 36
5.4 Outputs from the TacticalVehiclDLL S-function. 37

ix

x LIST OF TABLES

Chapter 1

Background

1.1 Overview

The MultiUAV2 simulation is a (Simulink/Matlab/C++)-based simulation that is capable of sim-
ulating multiple unmanned aerospace vehicles which cooperate to accomplish a predefined mission.
The simulation is organized using the Mathworks’ Simulink simulation software, but most of the
functionality is in Matlab script functions. MultiUAV2is a non-real-time simulation that contains
six-degree-of-freedom (6DOF) vehicle dynamics models, simple target models, and user-defined co-
operative control algorithms. The nominal simulated scenario consists of searching an area and
prosecuting the targets found there. Construction of the simulation satisfied the need for a simula-
tion environment that researchers can use to implement and analyze cooperative control algorithms.
The simulation is implemented in a hierarchical manner with inter-vehicle communications explic-
itly modelled. During construction of MultiUAV2, issues concerning memory usage and functional
encapsulation were addressed. MultiUAV2 includes plotting tools and links to an external program
for post-simulation analysis. Each of the vehicle simulations include 6DOF dynamics and embed-
ded flight software. The embedded flight software consists of a collection of managers (agents) that
control situational awareness and responses of the vehicles. Managers included in the simulation
are: Tactical Maneuvering, Sensor, Target, Cooperation, Route, and Weapons.

During the simulation, vehicles fly predefined search trajectories until a target is encountered.
Each vehicle has a sensor footprint that defines its field of view. Target positions are either set
randomly or they can be specified by the user. When a target position is inside of a vehicle’s
sensor footprint, that vehicle runs a sensor simulation and sends the results to the other vehicles.
With actions based on the selected cooperative control algorithm, the vehicles prosecute the known
targets. For the nominal simulation, the vehicles are destroyed when they attack a target. During
prosecution of the targets the vehicles generate their own minimum-time trajectories to accomplish
tasks. The simulation takes place in a three dimensional environment, but all of the trajectory
planning is for a constant altitude, i.e. two dimensions. Once each vehicle has finished its assigned
tasks it returns to its predefined search pattern trajectory. The simulation continues until it is
stopped or the preset simulation run time has elapsed.

1.2 Implementation

MultiUAV2 is organized into two major top-level blocks, Vehicles and Targets, see Figures 1.1–1.3.
The other two blocks at the top level, Initialization and DataForPlotting, call functions to initialize

1

2 CHAPTER 1. BACKGROUND

the simulation and save simulation data for plotting. Nominally, the top-level blocks contain
the sub-blocks and connections required to implement simulation of 8 vehicles and 10 targets,
see Figures 1.2–1.5. Information flow between the vehicles is facilitated with a communication
simulation, see Chapter 4. Information flow between blocks within each vehicle is implemented
using Simulink wires and, sparingly, global Matlab memory. To facilitate simulation truth
data flow between the objects in the simulation a truth message passing mechanism is used, see
Chapter 4.

Nominally there are 8 vehicles and 10 targets implemented in MultiUAV2. By changing global
parameters, the number of targets and vehicle used in a simulation can be decreased. The number
of vehicles and targets can be increased by adding mode blocks and making changes to global
parameters. All of the vehicles in this simulation have the same simulation structure. The same is
true for the targets. Therefore, to implement the simulation only one vehicle block and one target
block needs to be built and then copies of these blocks can be used to represent the rest of the
vehicles and targets. To simplify simulation model modifications, a vehicle and a target block were
implemented and then saved in a Simulink block library. This Cooperation block library was used
to instantiate the Vehicle and Target blocks. When one uses a block from a block library, a link
from the block to the library is created so when the library is updated the linked blocks are also
updated. Therefore the first vehicle or target block is the real block and the rest of the blocks are
links to a copy of the real blocks in the Cooperation block library.

1.3 Using This Manual

The Getting Started and Modifications To The Simulation sections of the manual, see Chapters 2
and 6, contain step by step instructions for operating and changing the MultiUAV2 simulation. The
sections, Embedded Flight Software, chapter 3, Inter-Vehicle/Simulation Truth Communications,
chapter 4, and, Vehicle Dynamics Simulation, chapter 5, contain background information on major
functions. References for M-Functions, Global Variables, and Global Structures are located in the
appendices, see Appendix A, B, and C.

1.3. USING THIS MANUAL 3

Figure 1.1: Top level block layout.

4 CHAPTER 1. BACKGROUND

Figure 1.2: Layout of vehicle blocks.

1.3. USING THIS MANUAL 5

Figure 1.3: Layout of target blocks.

6 CHAPTER 1. BACKGROUND

Figure 1.4: Layout of blocks inside the vehicle.

Figure 1.5: Layout of blocks inside the target.

Chapter 2

Getting Started

2.1 Setting-up the Simulation

The files for the MultiUAV2 simulation are in and below the directory MultiUAV2, Figure 2.1. If
these directories and files are present, no other setup is required. The contents of the MultiUAV2
directory are:

startup.m Script to setup the simulation environment.
AVDSData Data directory for AVDS visualization of sim results.
Documents Directory for highest level documentation, i.e. manual, etc.

InputFiles Directory for various input files needed by the simulation. Typically used only
by s-function files.

m-file Directory for all of the m-file scripts/functions.
MonteCarloData Data directory for Monte-Carlo simulation data.

s-model Directory for all of the Simulink models.
src Directory for compiled and source C++ material for mex-/s-func, and additional

libraries; makefile(s) and MSVC++ project files.
tool Directory to hold little tools/scripts mostly useful for development, rather than

simulation use.

2.2 Running the Simulation

To run the simulation, do the following:

1. Start Matlab in the MultiUAV2 directory. It will initialize the needed paths, change to the
m-file directory, and bring up the graphical user interface (GUI). Alternatively, start Matlab,
change to the MultiUAV2 directory and run the script Startup.m.

2. Many (but not all) simulation parameters are specified in the file: m-file/InitializeGlobals.m.
There is a GUI button to open this file for editing.

3. Open the Simulink model, MultiUAV.mdl, by pressing the GUI button marked Open Mul-
tiUAV Main (Simulink).

4. Start the Simulation using the Simulink controls.

7

8 CHAPTER 2. GETTING STARTED

Figure 2.1: MultiUAV2 Directories. Figure 2.2: MultiUAV2 ModelBrowser.

2.3 The Graphical User Interface (GUI)

Running the m-file GUIMultiUAV.m opens the GUI. Note: InitializeGlobals calls GUIMultiUAV.
The GUI contains buttons, that perform various functions, see Figure 2.3. The functions performed
by pressing these buttons are commonly used functions or open commonly used files, see Table 2.1.

To add/remove buttons from the GUI do the following:

1. open the file GUIMultiUAV.m.

2. add/subtract a line to the ButtonsStrings cell array. Each line has three cells, Button Label,
Command string, and Button color string.

3. create a function to handle the command. Note this can be done by adding and new case to
the switch action function below the definition of the ButtonStrings.

2.4 Simulation Output

During the simulation, all vehicle positions, rotations, alive/dead flags, and target assignments are
saved for later analysis. The vehicle data is saved to the file, SimPositionsOut.mat, in the Matlab
matrix, XYPositions, with the columns corresponding to elapsed time and the rows defined as
shown in Table 2.2. During the simulation, all target positions and states are saved to the file,

2.5. SIMULATION DATA PLOT WINDOW 9

Figure 2.3: Graphical User Interface.

SimTargetsOut.mat, in the Matlab matrix, TargetPositions, with the columns corresponding to
elapsed time and the rows defined as shown in Table 2.3.

2.5 Simulation Data Plot Window

After running the simulation the saved data can be plotted using the PlotOutput function. This
function can be invoked directly or by pressing the Plot Results button on the GUI. The resulting
plot, see Figure 2.4, shows a top-down plan-view plot of the simulation data. The plot shows the
vehicle positions (numbers), sensor footprints (large colored rectangles), targets (small rectangles),
markers (small colored squares near the targets) indicating vehicle to target assignment, and the
paths of the vehicles (colored lines). Included on the plot are the following controls:

Graphics Toolbar this is Matlab’s standard toolbar that can used to zoom, print,
annotate and save the plot.

Pull-Down Menu Options these menus offer the following options:

Trajectory/Trail selections include:

Trajectory plot the full path at the start of the animation

Trail plot the path behind the moving vehicle

None do not plot the path

Miles/Feet selections include:

10 CHAPTER 2. GETTING STARTED

Figure 2.4: MultiUAV2 Plot Window.

Feet use feet for display units

Miles use miles for display units

Waypoint Display show/hide last set of waypoints used by each vehicle

Rabbit Display show/hide the control system rabbit for each vehicle

Time Delay amount of time to delay between plot updates during animation

Line Width width of lines in the plot

Data Increment number of data points to skip between animation updates

Background Color set the background color of the plot

Simulation Time display of simulation time in seconds

Pause Button pause the animation

Animate Button start the animation and redraw the plot

Elapsed-Time Slider position of this slider represents simulation time

Stop Button stop the simulation

Copy Plot Copies the vehicle trajectory plot into a new plot window that does
not have the GUI buttons. This is used to generate figures for doc-
umentation.

2.5. SIMULATION DATA PLOT WINDOW 11

Button Name Action
Run Simulation starts the MultiUAV2 simulation.
Run MonteCarlo start the Monte-Carlo simulation.
Stop MonteCarlo stops the Monte-Carlo simulation when the current simula-

tion run completes.
Plot Simulation Results opens the Simulation Data Plot window, see Section 2.5.

NOTE: OptionSaveDataPlot must be set to one before run-
ning the simulation to save data for plotting.

Print Simulation Settings prints the values of the global constants in the Matlab win-
dow.

Plot Comm History opens a plot of the communication history of last simulation.
Save AVDS Data save simulation data for playback in AVDS. NOTE: Option-

SaveDataAVDS must be set to one before running the simula-
tion to save AVDS data.

Edit Globals opens the file InitializeGlobals.m for editing. This file is
used to set up the global constants for the simulation.

Edit MonteCarlo opens the file MonteCarlo.m for editing. This file is used to
set up and run Monte-Carlo simulations.

Edit Simulation Functions opens the file SimulationFunctions.m for editing. This file
is used to initialize the simulation. It is the best place to put
break points for debugging.

Edit Create Structure opens the file CreateStructure.m for editing. This file is
used to create most of the data structures in the simulation.
It is a good place to go to find out what elements are defined
ofr a particular structure.

Run VehicleTest runs the single vehicle test simulation VehicleTest.mdl.
Open MultiUAV2 (Simulink) opens the MultiUAV2 simulation in Simulink.
Xtreme Reinitialization clears all memory, the console, and reinitializes the simula-

tion.
Edit GUI opens the file GUIMultiUAV.m for editing. This makes it easy

to add/remove buttons from the user interface window.
Message: ... Each one of these buttons print out the stored messages of

the indicated type.

Table 2.1: GUI buttons and their associated actions.

12 CHAPTER 2. GETTING STARTED

Beginning Row Numbers Saved Data
XYPositions(1,:) simulation time in seconds.
XYPositions(2,:) UAV1 position x-direction.
XYPositions(3,:) UAV1 position y-direction.
XYPositions(4,:) UAV1 heading.
XYPositions(5,:) UAV1 vehicle dead flag.
XYPositions(6,:) UAV1 target assignment.
. . .
XYPositions(37,:) UAV8 position x-direction.
XYPositions(38,:) UAV8 position y-direction.
XYPositions(39,:) UAV8 heading.
XYPositions(40,:) UAV8 vehicle dead flag.
XYPositions(41,:) UAV8 target assignment.

Table 2.2: Simulation output, vehicle data.

Beginning Row Numbers Saved Data
TargetPositions(1,:) simulation time in seconds.
TargetPositions(2,:) Target1 position x-direction.
TargetPositions(3,:) Target1 position y-direction.
TargetPositions(4,:) Target1 position z-direction.
TargetPositions(5,:) Target1 type.
TargetPositions(6,:) Target1 status (state).
TargetPositions(7,:) Target1 heading.
. . .
TargetPositions(56,:) Target10 position x-direction.
TargetPositions(57,:) Target10 position y-direction.
TargetPositions(58,:) Target10 position z-direction.
TargetPositions(59,:) Target10 type.
TargetPositions(60,:) Target10 status (state).
TargetPositions(61,:) Target10 heading.

Table 2.3: Simulation output, target data.

Chapter 3

Embedded Flight Software
(Managers)

3.1 Overview

The MultiUAV2 simulation contains the Embedded Flight Software (EFS) blocks necessary to im-
plement cooperative control of the vehicles. EFS is a collection of software managers that cause
the vehicle to perform the desired tasks, see Figure 3.1. The following managers have been imple-
mented: Tactical Maneuvering, Sensor, Target, Cooperation, Route and Weapons. These managers
are described in the following sections.

3.1.1 Redundant Central Optimization

Many of the cooperative control algorithms are implemented in a Redundant Central Optimization
(RCO) manner to control the cooperation of vehicles while they carry out their mission to find,
classify, kill, and verify the targets in the simulation. RCO consists of vehicles that are formed
into a team that contains team members and a team agent as shown in Figure 3.2. The team
agent makes and coordinates team member assignments through the use of a centralized optimal
assignment selection algorithm that is based on partial information. The redundant portion of
the RCO structure comes about because each team member implements a local copy of the team
agent. Because of this, each of the team members calculates assignments for the entire team and
then implements the assignment for itself.

3.1.2 Sequence of Events

During the progress of the simulation the EFS managers cause the vehicle to react to changes in
target states, vehicle tasks, and task assignments. As an example of the information flow between
EFS managers during the simulation, when the CapTransShip algorithm is selected the following
is a sequence of events that occur when a previously undetected target is discovered:

1. Vehicle Dynamics block senses target:

• Makes vehicle heading and target ID available to local vehicle.

2. The local Sensor Manager calculates single ATR based on information from the Vehicle Dy-
namics block:

13

14 CHAPTER 3. EMBEDDED FLIGHT SOFTWARE (MANAGERS)

• Makes single ATR available to all vehicles.

3. Sensor Managers on all vehicles calculate combined ATR value based on information from all
vehicles:

• Makes combined ATR available to local vehicle.

4. Target Managers on all vehicles update the target state based on the combined ATR value
from the local vehicle:

• Makes target state available to all vehicles.If any of the targets change state

5. Route Managers on all vehicles calculate optimal route and cost to the target based on its
new state:

• Makes cost to service target available to all of the vehicles.

6. Cooperation Managers on all vehicles calculate optimal assignment of vehicles to targets based
on the optimal costs:

• Makes assignment for local vehicle available to the local vehicle.

7. Route Managers on all vehicles implement assigned routes:

• Makes assigned waypoints available to the local vehicle.

8. Tactical Maneuvering Managers on all vehicles read assigned waypoints and calculate com-
mands that will cause the autopilot to cause the vehicle to fly to the waypoints:

• Makes autopilot commands available to the local vehicle.

9. Vehicle Dynamics reads autopilot commands and runs vehicle dynamics simulation:

• Makes vehicle position and heading available to local vehicle.

3.2 Tactical Maneuvering Manager

This manager is used to perform all of the functions necessary for near-term guidance of the vehicle.
At this time the Tactical Maneuvering Manager is only being used to generate autopilot commands
to cause the vehicle to follow given waypoints. In order to remove timing differences between the
Tactical Maneuvering Manager and the vehicle dynamics, the interface to both of these functions
was combined in one S-Function in the Aircraft Dynamics block, see Chapter 5. TacticalManeuvering
uses the inputs to the block Aircraft Dynamics as well as the global variables: WaypointFlags and
WaypointCells to generate autopilot commands. The array, WaypointFlags, is used as a check to
see if the cell for this vehicle in WaypointCells contains new waypoints.

• Manager Responsibilities:

¥ Generates autopilot commands to cause the vehicle to follow given waypoints.

• Data Required by this Manager:

3.2. TACTICAL MANEUVERING MANAGER 15

Figure 3.1: MultiUAV2 Managers.

Figure 3.2: UAV team.

16 CHAPTER 3. EMBEDDED FLIGHT SOFTWARE (MANAGERS)

¥ Waypoints to follow
¥ current state of the vehicle, i.e. position, velocity, etc.

• Data Generated by this Manager:

¥ Autopilot commands
¥ current waypoint count

3.3 Sensor Manager

This manager is used to perform all of the functions necessary to monitor the sensors and process
sensed data.

• Manager Responsibilities:

¥ Keeping track of which targets have been detected.
¥ Automatic target recognition (ATR) based on sensed data from this vehicle.
¥ Combination of ATR values for each target from data communication from this and

other vehicles.
¥ Calculation of a Battle Damage Assessment (BDA) value, see the ATR Single block.

• Data Required by this Manager:

¥ Sensed target value and heading from the current vehicle.
¥ Combined ATR values for the other vehicles

• Data Generated by this Manager:

¥ Single ATR value
¥ Combined ATR value.
¥ BDA value

• Description of Functions:

Calculation of single ATR value Given the targets length (L), width (W) and aspect
angle1 (θ) the single ATR value (ATRs) is calculated with the following equations. A
representative plot of ATRs vs. θ is shown in Figure 3.4.

ATRs =

W arccos(θ) + L arcsin(θ)
L + W

× SF for 0 ≤ θ ≤ π

2
−W arccos(θ) + L arcsin(θ)

L + W
× SF for

π

2
< θ ≤ π

−W arccos(θ)− L arcsin(θ)
L + W

× SF for π < θ ≤ 3π

2
W arccos(θ)− L arcsin(θ)

L + W
× SF for

3π

2
< θ < 2π

(3.1a)

1Angle definitions are shown in 3.3.

3.4. TARGET MANAGER 17

Figure 3.3: Angle definitions for ATR.

SF = 0.8
L + W√
W 2 + L2

(3.1b)

Calculation of combined ATR value Given the values for ATRs and the respective an-
gles θ, two single ATR values for a target can be combined into to one (ATRc) with the
following equations:

ATRc = (ATR1 + ρ×ATR2)− (ATR1 × ρ×ATR2) (3.2a)

ρ = 1.0− e−0.3|θ2−θ1| (3.2b)

If more than two single ATR values exist for a target, all combined ATR values are
calculated for all combinations of the single values. The largest combined ATR value is
used for that target.

Calculation of BDA value At this time there is no calculation for BDA values there is
only a check to see if the target is sensed during the time it is ready for BDA.

3.4 Target Manager

Target Manager Creates and manages list of known and potential targets. Creates and manages
list of known and potential targets.

• Manager Responsibilities:

¥ Perform target classification.
¥ Send target information requests based on data needed for high level of confidence in

classification.
¥ Manage six target states (see Figure 3.5):

18 CHAPTER 3. EMBEDDED FLIGHT SOFTWARE (MANAGERS)

Figure 3.4: ATR template.

D Not Detected
D/C Detected/Not Classified
C/A Classified/Not Attacked
A/K Attacked/Not Killed
K/V Killed/Not Verified

V Verified
¥ Account for moving targets and target registration issues.

• Data Required by this Manager:

¥ Truth model for any sensed target
¥ Angle target was sensed from
¥ Sensed target information from other vehicles

• Data Generated by this Manager:

¥ New target/Change in targets state
¥ State of targets (includes mode, sensed position, ATR values, etc.)
¥ Data requirements to feed into the ATR algorithms, i.e. target location, estimated pri-

ority, estimated aspect angles,

• Description of Functions:

¥ Target State Determination
I Assume other vehicles target states are correct. Use other vehicle target states to

upgrade state this vehicles target states. That is, if any of the other vehicles have
a particular target in a higher state, then this vehicle will change that targets state
to match.

3.5. COOPERATION MANAGER (ASSIGNMENT ALGORITHMS) 19

Figure 3.5: Target state transition diagram.

I Implement a state machine to run state transition functions to check to see if the
state of a target needs to be changed.

I Output current state for each target. This state implies the action that needs to be
taken with respect to the target, i.e Observation, Attack or BDA.

3.5 Cooperation Manager (Assignment Algorithms)

Calculates assignment for the vehicle based on information gathered from all of the vehicles.

• Manager Responsibilities:

¥ Perform assignment calculations to assign each vehicle to a task. Tasks include Con-
tinue to Search, observation of a potential target, attack of a target, and battle damage
assessment of an attacked target.

• Data Required by this Manager:

¥ State of each target
¥ Benefit of each vehicle performing each available task plus the benefit of each vehicle

continuing to search.

• Data Generated by this Manager:

¥ Vehicle assignment for each vehicle.

3.5.1 Single Assignment Tour vs Multiple Tour Assignment

A single task tour assignment algorithm is an algorithm that assigns each UAV to a target to
accomplish one task, i.e. classification, attack or verification. In order to make single assignments

20 CHAPTER 3. EMBEDDED FLIGHT SOFTWARE (MANAGERS)

both trajectory planning and assignment algorithms must be considered. While trajectory planning
for single assignment tours is not trivial, it is possible to use computational geometry to generate
optimal trajectories. During the assignment process, trajectories are generated from all of the
UAVs to all of the known targets based on the tasks that need to be accomplished on those targets.
For task assignment, a capacitated transshipment algorithm can be used to assign the UAVs to
the targets, based on the cost of traversing the candidate paths. Assigning UAVs based on a single
tour can be very inefficient, as it doesn’t take into account coupling that occurs between performing
tasks on targets. That is, when a UAV plans to accomplish a task on a particular target, such as
classification, it is much more efficient if that UAV also can take into account the next required task
for that target, such as attack. When more than one task is taken into account during the planning
and assignment process, the algorithm can be said to be based on multiple task tours. The need
to included multiple-tours in path-planning and assignment algorithms increases the complexity
of these algorithms significantly. This complexity is not only due the to possible combinatorial
explosion of possible paths and assignments, but also due to the requirement that the tasks for
each target must be accomplished in a specified order. The following sections describe different
algorithms that have been implemented for both single and multiple task tour assignments. For
more information see Rasmussen et al. [5]

3.5.2 Capacitated Transhipment Network (Network Flow) (Single Task Tours)

A network optimization model is used to calculate the vehicle task assignments. Network opti-
mization models are typically described in terms of supplies and demands for a commodity, nodes
which model transfer points, and arcs that interconnect the nodes and along which flow can take
place. There are typically many feasible choices for flow along arcs, and costs or values associated
with the flows. Arcs can have capacities that limit the flow along them. An optimal solution is the
globally least cost (or maximum value) set of flows for which supplies find their way through the
network to meet the demands. To model weapon system allocation, we treat the individual vehicles
as discrete supplies of single units, tasks being carried out as flows on arcs through the network,
and ultimate disposition of the vehicles as demands. Thus, the flows are 0 or 1. We assume that
each vehicle operates independently, and makes decisions when new information is received. These
decisions are determined by the solution of the network optimization model. For more information
on the Network Flow algorithm see Nygard et al. [4], Schumacher et al. [6].

3.5.3 Iterative Network Flow (Multiple Task Tours)

Due to the integrality property, it is not normally possible to simultaneously assign multiple vehicles
to a single target, or multiple targets to a single vehicle. However, using the network assignment
iteratively, tours of multiple assignments can be determined. This is done by solving the initial
assignment problem once, and only finalizing the assignment with the shortest estimated time of
arrival. The assignment problem can then be updated assuming that assignment is performed,
updating target and vehicle states, and running the assignment again. This iteration can be re-
peated until all of the vehicles have been assigned terminal attack tasks, or until all of the target
assignments have been fully distributed. The target assignments are complete when classification,
attack, and battle damage assessment tasks have been assigned for all known targets. Assignments
must be recomputed if a new target is found or a UAV fails to complete an assigned task. For more
information on the Iterative Network Flow algorithm see Schumacher et al. [7].

3.6. ROUTE MANAGER 21

3.5.4 Iterative Auction (Multiple Task Tours)

Using the same strategy as the Iterative Network Flow, the Iterative Auction builds up multiple
task tours of assignments for the vehicles by using a Jacobi auction solver. The auction is used to
find an initial set of assignments, freezes the assignment with the shortest estimated time of arrival
and then repeats this process until all possible tasks have been assigned. For more information see
the explanation of the Iterative Network Flow algorithm in §§3.5.3

3.5.5 Relative Benefits (Multiple Task Tours)

This method requires a relaxation of the optimality requirement, but can potentially produce good
paths and assignments quickly. One major problem with this and other resource allocation methods
is the absence of a good metric to judge its efficacy. There are some possible algorithms that will
return results that are very close to optimum, but none of them have been implemented for this type
of problem. The central theme of this algorithm is that multiple assignment tours can be developed
by making single assignment tours and then trading assignments be-tween the UAVs based on the
relative benefit of one UAV taking on the assignment of another. For more information on the
Network Flow algorithm see Rasmussen et al. [5].

3.5.6 Distributed Iterative Network Flow (Multiple Task Tours)

The Iterative Network Flow algorithm was initially implemented in a RCO manner, see 3.1.1.
For the Distributed Iterative Network Flow, the original Iterative Network Flow algorithms were
implemented in a distributed manner, i.e. each vehicle calculates benefits for its self to complete
the required tasks at each iteration and then sends these benefits to the other vehicles. All the
vehicle run the Network Flow algorithms and then move on to the next iteration.

3.5.7 Distributed Iterative Auction (Multiple Task Tours)

The Iterative Auction algorithm was initially implemented in a RCO manner, see 3.1.1. For the
Distributed Iterative Auction, the original Iterative Auction algorithms were implemented in a
distributed manner, i.e. each vehicle calculates bids for the required tasks at each iteration and
sends these bids to the other vehicles for use in an asynchronous distributed auction.

3.6 Route Manager

This manager is used to plan and select the route for the vehicle to fly. Part of the functionality is
calculation of the lowest cost route to all known targets, based on each target’s state. The status
of the vehicle’s assigned task is also calculated. For assignment algorithms that find multiple-task
tours, many of the functions of the Route Manager are implemented in the Cooperation Manager.

• Manager Responsibilities:

¥ Maintain arrays of waypoints that describe primary and alternate flight trajectories for
the vehicle.

¥ Calculate new flight trajectories for the vehicle based on mission requirements.

¥ Output parameters describing costs of using alternative flight trajectories.

22 CHAPTER 3. EMBEDDED FLIGHT SOFTWARE (MANAGERS)

• Data Required by this Manager:

¥ Position and ingress headings to all known objects/targets.
¥ Current vehicle position and heading.

• Data Generated by this Manager:

¥ Cost of each of the alternative flight trajectories.

• Description of Functions:

¥ Replan - Uses simple geometry to calculate flight trajectory from vehicles current position
and heading to object/target with a specified standoff along a specified ingress heading.

¥ Outputs waypoints that are calculated based on a specified turn radius.
¥ Waypoints for each alternative flight trajectory are save in a Matlab cell array.

Calculates the ETA, cost and waypoint trajectory for the lowest cost flyable path to each of the
targets, to accomplish the appropriate task, and stores the data for later use. The ReplanRoutes
block calls the M-function, ReplanRoutes to do the calculations. The lowest cost set of waypoints
for each known target is stored in the appropriate location in the global structure VehicleMem-
ory.RouteManager. The function, MinimumDistance, is used to calculate the minimum time route
from the vehicle’s current position to a target given the vehicle’s position, velocity vector, com-
manded turn radius, the desired ingress heading to the target, and the required sensor standoff
distance, see Figure 3.6. To do this, MinimumDistance uses the following steps:

1. Calculates the centers, Ov1 and Ov2, of the turn circles that are connected to the vehicle using
the vehicle’s position, velocity and commanded turn radius.

2. Calculates the point SO, based on T, desired heading and standoff distance.

3. Uses SO, T and the commanded turn radius to calculate the centers of the turn circles Ot1

and Ot2.

4. Determines the relative turn directions for both Ot1 and Ot2 (clockwise/counterclockwise).
Note: At this point there are two circles tangent to the vehicle and two turn circles tangent to
the line between SO and T at SO. The trajectories for all of the combinations of vehicle turn
circles and standoff turn circles are calculated and the trajectory that produces the shortest
time to the target is considered the optimum trajectory. The following steps are used to
calculate each trajectory (calculations for the circles Ov2 and Ot1 are shown for convenience).

5. The coordinates of all of the points are transformed to the coordinate system where the center
of the vehicle turn circle (Ov2) is at the origin and the x-axis is along the line that intersects
the Ov2 and the standoff turn circle (Ot1).

6. Based on the relative turn directions of the two circles, tangent points for a line tangent to
both turn circles are calculated. Because of the turn directions there is only one trajectory,
tangent to both circles, that vehicle will be able to use to fly to the target. If the turn
directions are the same sign, i.e. both clockwise, then the tangent line will be parallel to the
transformed x-axis. If the turn directions are opposite, as in the example, the tangent line,
line Tv2 − Tt1, will be transverse between the circles.

3.7. WEAPONS MANAGER 23

Figure 3.6: Geometry for trajectory calculation.

7. The coordinates of the tangent points are transformed back to the original coordinates system.

8. Finally, the length of this trajectory is calculated for comparison with trajectories from the
other turn circle combinations.

3.7 Weapons Manager

Weapons Manager Selects a weapon and then simulates its deployment. Calls the function Weapon-
sRelease.m which returns a unique BombID number, the type of bomb dropped and the bomb’s
impact coordinates.

24 CHAPTER 3. EMBEDDED FLIGHT SOFTWARE (MANAGERS)

Chapter 4

Inter-Vehicle/Simulation Truth
Communications

4.1 Overview

The MultiUAV2 simulation has two mechanisms for passing messages between objects in the simu-
lation, one for communication messages and one for simulation truth messages. Previous releases
of the MultiUAV2 simulation provided vehicle-to-vehicle communication via a signal bus denoted by
CommBus, while a second aggregated signal bus, labeled SimBus, contained the truth information
for the simulation. The combination of these two data buses represented the complete information
state of the simulation. This perfect information state was available to all vehicles at every simu-
lation time-step. From many perspectives, perfect information access is unacceptable, particularly
when considering communication and processing delays. Thus, to incorporate communication and
processing delays into MultiUAV2, a new communication framework was introduced, see Figure 4.1.
In order to make it possible to distribute the MultiUAV2 over many computers, a similar framework
was introduced for passing truth information between objects in the simulation.

4.2 Communication Requirements

Maximum design flexibility is a significant and yet vague requirement that must be met by any
potential communication design. By maintaining genericity, we ensure that the resulting solution
will accommodate the simulation of specific communication requirements, e.g. protocol-specific,
theater-specific, or hardware-specific, while providing a simple and general framework to quantify
vehicle-to-vehicle communication needs, e.g. peak or average data-rate.

To provide flexibility in implementation of communication simulations that contain varying
levels of detail, a generic message passing scheme was chosen as the Virtual Communication Rep-
resentation (VCR). In this design, specific message types and their format are defined centrally in
the VCR and made globally available to the various Embedded Flight Software Managers (EFSMs)
as context requires1. Minimally, a message definition must contain a unique message identifier,
time-stamp(s), message layout enumeration, and data field to be written by the EFSM context.
Particular messages may be selected by the EFSM context as output resulting from a computation
that must be remotely communicated. Outgoing messages, which include data, from each vehicle

1The message structure discussed here refers to the format dictated by the MultiUAV2 package, rather than to
messages related to a specific communication system model.

25

26 CHAPTER 4. INTER-VEHICLE/SIMULATION TRUTH COMMUNICATIONS

are stored centrally, and pointers to these messages are distributed to an individual input queue
for each vehicle. These pointers are composed of the original message header and should minimally
inform the receiver of the message type, time sent, quality or priority of the message, and which
central repository contains the associated message data. A user defined rule component controls
the distribution of incoming messages to all vehicles based on the message headers.

We avoid adhering to a specific communication model in MultiUAV2 by isolating the message
delivery rules in user controlled components. Thus, end-users are free to choose any preferred com-
munication model. Moreover, the genericity of the VCR specification provides for easy extension.
For more information on the communications design see Mitchell et al. [1, 2], Mitchell and Sparks
[3]

4.3 Implementation

Since the MultiUAV2 simulation is implemented as a combination of Matlab and Simulink using
m-files and s-functions written in C++ and Matlab script, it is most convenient to use these
existing tools. In the parlance of MultiUAV2, the design abstraction outlined in § 4.2 is encompassed
in a communications manager that is divided into separate send and receive blocks contained within
the vehicle model.

The autologically named Simulink blocks that manage simulation, SendMessage, RecieveCom-
munications, SendTruth, and RecieveTruth can be see in Figures 4.2, 4.3, 4.4, and 4.5. Two global
Matlab structures are used to organize and store data for message passing, g Communication-
Memory and g TruthMemory. g CommunicationMemory is used for communication messages and
g TruthMemory is used for simulation truth messages. The required entries for both structures are
identical, i.e.:

NewStructure = struct(...
’InBoxes’,[], ...
’Messages’,[], ...
’DelayMatrix’,zeros(MaxNumberVehicles),...
’NumberMessages’,0, ...
’MemoryAllocationMetric’,[], ...
’InBoxAllocationMetric’,[], ...
’MsgIndicies’,[], ...
’Transport’,CreateStructure(’MSG_TransportType’) ...
);

The following is a list of the required entries for both of the message structures:

InBoxes Storage for the in-boxes. There must an in-box for each object using
the message structure.

Messages Storage for message structures.

DelayMatrix A matrix of times that represent communication delays from each object
to every other object in the simulation including the delay from one
object to itself.

NumberMessages Total number of messages in the Messages storage.

MemoryAllocationMetric Keeps track of number of time memory is allocated for messages.

4.3. IMPLEMENTATION 27

Figure 4.1: Overview of the message passing mechanisms.

1:ETACostToSearch 2:PositionID 3:WaypointIndex 4:TriggerReplan
5:ATRSingle 6:ATRTime 7:TargetStatus 8:TargetAttacked
9:ChangedStatus 10:SendPositionsFlag 11:TaskBenefits 12:AuctionData

Table 4.1: Communication messages and their unique identifiers.

InBoxAllocationMetric Keeps track of number of time memory is allocated for in-boxes.

MsgIndicies Enumerations of the messages, see Tables 4.1 and 4.2

Transport This is storage for a structure that manages how the messages are de-
livered, i.e through Matlab global memory or externally.

For more information on message structures see Appendices C.9 and C.10.

4.3.1 Sending Messages

From Figures 4.6 and 4.7, we see the currently specified remote message lists, which are composed
of the uniquely enumerated messages seen in Tables 4.1 and 4.2. These messages are defined in and
created by calling the m-file script CreateScturcture.m. Defining messages in this framework is
straightforward and is clearly illustrated by consider a sample message.

The ATRSingle signal is generated when the SensorManager detects a target and produces an
ATR observation. The signal itself contains the time the ATR observation was made and the ATR
values for all targets currently known by the observing vehicle. Additional signal data, again for
currently known targets, are the vehicle headings for each ATR value, estimated target pose angle,
and estimated target type. The corresponding message is generated by aggregating the vehicle
identifier, time the message was generated, and the number of entries in the data signal. Thus, the

1:VehicleState 2:VehicleIsDead 3:ChangeVehicleStatus
4:WeaponsRelease 5:TargetStatus 6:TargetState
7:VehicleStateSaveData 8:TrackList 9:ChangeAssignmentFlagSelf

Table 4.2: Truth messages and their unique identifiers.

28 CHAPTER 4. INTER-VEHICLE/SIMULATION TRUTH COMMUNICATIONS

Figure 4.2: Blocks used by the vehicles to send communi-
cation messages.

4.3. IMPLEMENTATION 29

Figure 4.3: Block used to receive communication messages.

ATRSingle message is defined as

case ’MSG_ATRSingle’
NewStructure = struct(...

’Title’,’ATRSingle’,...
’ID’,0, ...
’Enabled’,1, ...
’NumberSenders’,MaxNumberVehicles, ...
’Data’,{[]}, ...
... %%%%%%%% Message Storage Enumeration %%%%%%%%%%
’IndexStorageID’,[1], ...
’IndexStorageTimeStamp’,[2], ...
... %%%%%%%% Message Content Enumeration %%%%%%%%%%
’VehicleID’,[1], ...
’IndexSinglATR’,[2:(1+MaxNumberTargets)], ...
’IndexSensedHeading’,[(2+MaxNumberTargets):(1+2*MaxNumberTargets)], ...
’IndexEstimatedPoseAngle’,[(2+2*MaxNumberTargets):(1+3*MaxNumberTargets)], ...
’IndexEstimatedType’,[(2+3*MaxNumberTargets):(1+4*MaxNumberTargets)], ...
’NumberEntries’,(1+4*MaxNumberTargets), ...
’SizeToPreAllocate’,(AllocationsPer100Sec*2*g_ActiveVehicles), ...
’TotalNumberMessagesAllocated’,0, ...

’LastMessageIndex’,0, ...
’DefaultMessage’,[], ...

30 CHAPTER 4. INTER-VEHICLE/SIMULATION TRUTH COMMUNICATIONS

Figure 4.4: Blocks used by the vehicles to send simulation
truth messages.

4.3. IMPLEMENTATION 31

Figure 4.5: Block used to receive simulation truth messages.

Figure 4.6: Parameter selection for send truth messages
block.

32 CHAPTER 4. INTER-VEHICLE/SIMULATION TRUTH COMMUNICATIONS

Figure 4.7: Parameter selection for send communication
messages block.

’MessageDelay’,0 ...
);

where the constant value MaxNumberTargets is autological. In the message definition, the fields
are defined as follows:

Title The message title of the corresponding signal name.

ID Unique identifier for the message type. a zero indicates that the
ID is uninitialized.

NumberSenders Number of object in the simulation that can send this message.
This is used to size the output ports on the receive blocks.

Data This is where the message data is stored.

IndexStorageID The index of the ID entry. Used when working with the Data
matrix.

IndexStorageTimeStamp The index of the time that the message was sent. Used when
working with the Data matrix.

Index... The indices of the data elements of the message. Used after
message has been received.

NumberEntries Total number of data element indices.

SizeToPreAllocate Size of matrix to preallocate/grow a growing matrix. Ideally
this number is equal to the required size of the Data matrix at
the end of the simulation run. Choosing a number too small
cause memory to be allocated more often, slowing down the
simulation. Choosing a number too large wastes memory.

TotalNumberMessagesAllocated Used to track amount of memory allocated.

LastMessageIndex Used to track message index number of addressing as well as
memory allocation.

DefaultMessage Not used at this time.

4.3. IMPLEMENTATION 33

Field Name Default Value
MessageHeaders []
IndexTimeStamp [1]
IndexTimeActivate [2]
IndexMessageID [3]
IndexMessagePointer [4]
IndexMessageEvaluated [5]
NumberEntries (6)

Table 4.3: InBoxes field description.

MessageDelay Amount of time to add to the message delivery delay for all
messages of this type.

During a simulation, messages are accumulated in individual message queues, i.e. the Data
element of the message structure, that are stored in the Messages structure array in the communi-
cation/truth message structure. Separate message headers are distributed to the input queues, i.e.
InBoxes, of the vehicles pointing to the specific message. The message headers that appear in an
input queue for each vehicle, are stored in the communication/truth structure under the InBoxes
structure array identifier, containing the fields with default values seen in Table 4.3. Both the com-
munication, g CommunicationMemory, and truth, g TruthMemory, structures contain storage for
in-boxes. Pointers in the in-boxes can only refer to messages that are a part of the main message
structure that they are a part of, i.e. g CommunicationMemory or g TruthMemory.

As an example scenario, let vehicle:1 generate the first simulation ATRSingle message at time
t = 30 s. At t = 30.50 s, the message will be processed and available to vehicle:2, thus ∆t = 0.5 s.
Then, the message header entry contains

[30.00 30.50 5.00 1.00 0.00] ,

and is stored as a single column in g CommunicationMemory.InBoxes(2).MessageHeaders. Read-
ing from left-to-right above, the header indicates that the message arrived at t = 30 s, should
not be known to vehicle:2 until t = 30.5 s, and is of type 5:ATRSingle. The next field is the
index pointer into the ATRSingle message queue. Thus, the message data is accessed through
g CommunicationMemory.Messages5.Data(:,1). The last field in the MessageHeaders indicates
the process status of the message. Currently, a value of zero (0) indicates the message has not been
evaluated while one (1) indicates a processed status. This mechanism for representing message
status could also be used to implement a quality of service or priority message structure.

4.3.2 Receiving Messages

The Receive Messages blocks, seen in Figure 4.3 and 4.5, represent the Simulink interface to the
end-user component that specifies how messages should be delivered. This block is an s-function
that reads the current vehicle’s message queue via mex access at every major model update, pro-
cesses messages, and constructs an output list of signals to be fed by to the Simulink simulation.
The individual signals are aggregated onto a bus denoted by ExternalComm where they can be
retrieved as needed by the vehicle simulations. For algorithm specifics, the s-function associated
with the CommunicationsDLL block is defined in the C++ file CommunicationsDLL.cpp located

34 CHAPTER 4. INTER-VEHICLE/SIMULATION TRUTH COMMUNICATIONS

in the MultiUAVDLLs/CommunicationsDLL directory. The required parameter for the Communica-
tionsDLL block is the name of the message structure to use, i.e. either g CommunicationMemory or
g TruthMemory.

4.4 Message Exchange Example

When one simulation object sends a message to another simulation object the following events
occur:

1. The simulation object changes the time stamp of the message in the appropriate Send Message
block. (Simulink)

2. The changed time stamp causes the Send Message block to call the Matlab function, SendMessageS.
(Simulink)

3. SendMessageS appends the data for the message to the end the appropriate .Data matrix for
the message, i.e. for ATRSingle the data matrix is g CommunicationMemory.Messages5.Data(:,1).
(Matlab)

4. For communication messages, SendMessageS calculates delivery times for the message for
each of the messages based on the global matrix, g CommunicationMemory.DelayMatrix.
(Matlab)

5. SendMessageS appends entries to the InBoxes of the intended message receivers. This in-
cludes setting the IndexMessageEvaluated flag equal to zero. (Matlab)

6. At each model update, each of the simulation object’s Receive Message blocks are evaluated
and they call the s-function CommunicationsDLL. (Simulink)

7. The CommunicationsDLL function retrieves the simulation object’s InBoxes and checks the
IndexMessageEvaluated flags for unevaluated messages, i.e. those with a zero value. (C++)

8. If unevaluated messages are found, their delivery time is checked against the simulation
time. If the delivery time is less than the simulation time, the message is inserted into the
appropriate output of the Receive Message block. (C++)

9. The time stamp output, of the Receive Message block, for the appropriate message type is
updated to signal a new message. (C++)

Chapter 5

Vehicle Dynamics Simulation

5.1 Overview

Vehicle dynamics, sensor footprint, and tactical maneuvering manager are aggregated in a single
s-function, TacticalVehicleDLL. For more information on the Tactical Maneuvering Manager, see
§ 3.2. The vehicle dynamics are based on inputs from a file of aerodynamic forces, moments, and
damping derivatives. The aerodynamic parameters are used, along with physical parameters, in a
nonlinear six-degree-of-freedom equations of motion simulation to generate the vehicle dynamics,
see § 5.3. The sensor footprint is implemented as a fixed area that is positioned relative to the
vehicle. Using supplied true positions of targets, the sensor footprint algorithm reports any targets
that are inside the sensor footprint area, see § 5.4.

5.2 Tactical Vehicle

TacticalVehicleDLL is an S-function that aggregates vehicle dynamics simulaiton with the Tactical
Maneuvering Manager, and the sensor footprint simulation. This S-function calls the TacticalVehicle
update function every major model update. The TacticalVehicle update function executes the
vehicle model, tactical maneuvering manager, and sensor footprint at 100 Hz. There are three
sources for inputs to the TacticalVehicleDLL s-function, block parameters, block inputs, and
global memory. The block parameters, see Table 5.1, are used to setup constants to configure
the function. The s-function block inputs are used for simulation generated signals that do not
change dimension during the simulation, see Table 5.2. Matlab global memory is mainly used for
information generated during the simulation that changes dimensions, i.e. waypoints, see Table 5.3.
See Table 5.4 for a list of the outputs from the TacticalVehicleDLL s-function. The vehicle state
is initialized using entries in the structure, VehicleMemory(-).Dynamics. The elements of this
structure are:

VTrueFPSInit: 370
PsiDegInit: 0

PositionXFeetInit: -4.593175853000000e+003
PositionYFeetInit: -9.842519685000001e+002
PositionZFeetInit: 675
NumberBombsInit: 1

FuelLB: 15000

35

36 CHAPTER 5. VEHICLE DYNAMICS SIMULATION

During the simulation the vehicles use waypoints, contained in the array of cell arrays WaypointCells,
for navigation. Each vehicle is assigned a waypoint cell array and these waypoint cells are stored
in the WaypointCells array. The array WaypointFlags is used to force TacticalVehicleDLL to
reread the waypoint cells, i.e. to change the vehicle’s waypoints, change the waypoint cell and set
the vehicle’s WaypointFlag equal to 1. Initial search waypoints are generated in the Matlab
function CalculateWaypoints.

StandAloneFlag This flag is set to zero for this application.
NumberTargets The maximum number of targets in the simulation
SensorRollTolerance Maximum roll angle, in degrees, for sensor operation.
WaypointNumberEntries Number of entries per waypoint.

Table 5.1: Parameters to the TacticalVehiclDLL S-function.

VehicleID Vehicle ID index
CmdTurnRadius Commanded turn radius (feet)
Target(1).Position x, y, z position of target 1 (feet)
Target(1).Type type of target 1
Target(1).Heading heading of target 1 (deg)
Target(1).Alive Alive flag for target 1
... ...
Target(MaxNumberTargets).Position x, y, z position of target MaxNumberTargets (feet)
Target(MaxNumberTargets).Type type of target MaxNumberTargets
Target(MaxNumberTargets).Heading heading of target MaxNumberTargets (deg)
Target(MaxNumberTargets).Alive Alive flag for target MaxNumberTargets

Table 5.2: Simulink inputs to the TacticalVehiclDLL S-function.

WaypointFlags Array of flags to trigger reloading waypoints.
WaypointCells Cell array of waypoints.
WaypointStartingIndex Array of waypoint starting indices.
VehicleMemory().Dynamics Vehicle initialization parameters.

Table 5.3: Matlab inputs to the TacticalVehiclDLL S-function.

5.3 Variable Configuration Vehicle Simulation

Vehicle dynamics in MultiUAV2 are generated using a simulation called Variable Configuration Vehi-
cle Simulation (VCVS). VCVS is a nonlinear six-degree-of-freedom vehicle simulation that includes
a control system which reconfigures the simulation for new aerodynamic and physical vehicle de-
scriptions. Vehicle dynamics are based on two configuration files, one containing aerodynamic data
and the other physical and control system parameters. The aerodynamic configuration file contains
tables of non-dimensional forces, moments, and damping derivatives. The vehicle model calculates
aerodynamic forces and moments by using the vehicle’s state and control deflections as indepen-
dent variables to look-up values from the aerodynamic tables. During the look-up process, linear

5.3. VARIABLE CONFIGURATION VEHICLE SIMULATION 37

Position x, Position y, Altitude vehicle position in feet
V true kts true velocity in knots
V true fps true velocity in feet per second
Phi, Theta, Psi angular orientation in degrees
Alpha, Beta angle of attack and sideslip angle in degrees
Mach Mach number
VNorth North velocity in feet per seconds
VEast East velocity in feet per seconds
VDown Down velocity in feet per seconds
PsiFiltered Filtered vehicle heading, filter not used
Thrust Thrust in pounds (not used)
SensorOn is the sensor on, based on the roll angle
CommandHeading Commanded heading in degrees
CommandAltitude Commanded altitude in feet
CommandVelocity commanded velocity in feet per second
WayPointNumber The current waypoint the vehicle is travelling toward
WayPointTypeCurrent type of the current waypoint
WayPointTypeLast type of the last waypoint
WayPointTargetHandleCurrent ID of the next target assigned
WayPointTargetHandleLast ID of the last target assigned
RabbitNpos, RabbitEpos, RabbitHdg state of the trajectory reference
TotalSearchTimeSeconds total search time in seconds
AssignedTarget ID of currently assigned target
AssignedTask type of currently assigned task
SensedTargets(MaxNumberTargets) IDs of targets that were found in the sensorfootprint

Table 5.4: Outputs from the TacticalVehiclDLL S-function.

interpolation is used for states and deflections not found in the tables. The non-dimensional values
obtain from the tables are combined with vehicle state data to calculate forces and moments acting
on the center of gravity of the vehicle. These forces and moments are combined with external forces
and moments, i.e forces and moments from an engine. The forces and moments are used, along with
the physical parameters, to calculate the equations of motion. Included in the model are first-order
actuator dynamics, including rate and position limits, and first-order engine dynamics.

VCVS uses a dynamic inversion control system with control allocation as its inner loop control
system, see Figure 5.1. A rate control system was wrapped around the inner loop to move from
angular acceleration commands to angular rate commands. The outer most loop is an altitude,
heading, sideslip, and velocity command control system. Gains for the rate controllers and the
outer-loop controllers can be adjusted by changing parameters in the parameter input file. New
vehicle dynamics can be introduced by changing the physical and aerodynamic parameters. When
new parameters are introduced, the control system uses control allocation to reconfigure for differ-
ent numbers of control effectors and the dynamic inversion controller compensates for changes in
response to control inputs.

38 CHAPTER 5. VEHICLE DYNAMICS SIMULATION

Figure 5.1: VCVS Schematic.

5.4 Sensor Footprint

The sensor footprint is implemented in a class in C++, i.e. CSensorFootprint. This class contains
functions that can calculate rectangular or circular sensor footprints. To check if targets are in the
circular footprint the function compares the difference between each of the target positions and the
calculated center of the footprint. If this distance is less than the sensor radius then the target is in
the footprint. The rectangular footprint function transforms the coordinates of the targets into a
coordinate system aligned with the rectangular footprint. After transformation the coordinates of
each target are compared to the limits of the sensor and any targets inside the limits are reported.

Chapter 6

Modifications To The Simulation

6.1 Modifying Simulation Blocks

To modify the vehicle blocks in the simulation do the following:

1. Make changes in the block UAV1

2. Open the library: MultiUAV/MultiUAVDLLs/cooperative.mdl

3. Unlock the library, i.e. Edit → Unlock Library

4. From the library, delete the block UAV1.

5. From MultiUAV2 copy the block UAV1 and paste it into the library.

6. Close and save the library.

7. Update MultiUAV2

To modify the targets blocks follow the above directions, but modify and copy the block
Target1. To add new connections between the vehicles use the following procedures:

1. Add any new outputs to the block UAV1.

2. Use the above steps to update the blocks.

3. Make the required connections in the block UAV1.

4. Use the above steps to update the blocks.

6.2 Compiling the Simulation

Instructions to compile the simulation code follow. These guides are divided into two platforms:

1. Microsoft Visual C++ (MSVC++) for Windows, and

2. any Unix like operating system using make, and having a C and C++ compiler.

39

40 CHAPTER 6. MODIFICATIONS TO THE SIMULATION

6.2.1 Microsoft Visual C++ for Windows

For MSVC++ version 6 or higher, the process is straight-forward:

1. From WindowsExplorer, open the file MultiUAVDLLs.dsw in the src directory.

2. Following the Project menu, select Set Active Project → Master; this may also be performed
through the Build toolbar.

3. Set the output version of the active project to Win32 Release, also via the Build toolbar.

4. Select Build → Build or type F7 to update the output object code in the event of changes,
or choose Build → Rebuild All to rebuild all of the libraries from scratch.

In many cases, the actions outlined above can be accomplished by use of the appropriate short-
cut keys or toolbar buttons.

6.2.2 Unix-like

The build system for Unix-like platforms is a bottom-up composition of subsystem makefiles that
is controlled by a top-level Makefile. Environmental settings and compiler/linker options are
managed by the make.env and make.opts include files, respectively. In general, we expect to be
using GCC as the compiler suite, but this can be changed in the environmental configuration options.
In general, the steps to build the system are as follows:

1. In make.env:

(a) set the value of TOP to the full-path to the top-level MultiUAV directory.

(b) configure the C++ and C compilers in CXX and CC, respectively.

(c) set the value of TWM ROOT to the full-path to the top-level of your Matlab installation.

(d) specify the library platform target in LIB DIR REL, e.g. LIB DIR REL = /lib/linux.

(e) generally, these are the only user modifications necessary here.

2. In make.opts:

(a) set the value of MAT DEFS to reflect the Matlab version you are using, as compared to
the required V5 interface.

(b) configure the compiler options as desired for debug vs. optimized, architecture, shared
library options, floating-point unit control, and additional link libraries, compiler defines
or include directories.

3. The first time the system is to build, dependency files must be generated. These subsystem
local .depend files are created by typing:

$ cd src
$ make dep

4. After which time, the entire system, including testing programs, can be built by entering:

$ make all

6.3. DEBUGGING THE SIMULATION 41

or simply

$ make

5. Any further changes to the code will only rebuild and relink material that directly depended
on the altered code.

6. Individual subsystem can be built from the top down as needed, e.g. to only build the
CapTranShip subsystem:

$ cd CapTranShip
$ make

6.3 Debugging the Simulation

There are three different debug facilities that can be used to debug the MultiUAV2 simulation, one
each for Matlab, Simulink and compiled MEX/S-functions. The compiled MEX/S-functions1require
platform specific debuggers usually associated the compiler used, e.g. Microsoft Visual C++
(MSVC++) Debugger for Windows or GNU gdb for code compiled with GNU gcc.

Matlab Debugger To debug m-file, one can use the built-in debugger in Matlab. To use
this debugger, open the m-file using the Matlab menu, i.e. from the Matlab menu select
File → Open and then select the desired m-file. This will open the m-file in Matlab’s
editor. Break points can be set in the file to stop the simulation when they are encountered.
During the simulation, one can press the pause button on the Simulinkinterface, at a desired
time, and then set break points in the m-files. NOTE: the command clear functions is
given during start-up initialization, in the function SimulationFunctions, every time the
Simulink simulation is started. This clears persistent variables in the simulation and any
set breakpoints. Therefore, to stop at a breakpoint during the simulation, one must either
set a breakpoint in SimulationFunctions after the clear functions command or use the
Simulink debugger to stop Simulink so a breakpoint can be set.

Simulink Debugger To debug Simulink model connections the Simulink debugger must be
used. To do this, start the Simulink debugger on the model MultiUAV2 with the following
command: sldebug ’MultiUAV’. The Simulink Debugger commands can be found in the
Using Simulink Manual, Chapter 11 Simulink Debugger.

MSVC++ Debugger To debug compiled S-functions use the debugger in Microsoft Visual C++
(MSVC++). To do this, follow these steps:

1. In MSVC++, open the workspace containing the project for the desired DLL.

2. Set the DebugDLL version of the desired DLL’s project as the active project.

3. Open the Project Settings dialog window for the desired DLL and make the following
settings:
• Executable for Debug session: C:\MATLAB\bin\matlab.exe

1For additional information about platform specific debugging of MEX/S-functions, see the Mathworks technical
note 1819: How Do I Debug C MEX S-functions? at http://tinyurl.com/2g6k9 (google cache link).

http://tinyurl.com/2g6k9

42 CHAPTER 6. MODIFICATIONS TO THE SIMULATION

• Working Directory: C:\UAV\MultiUAV (the path to the MultiUAV directory)

4. Start the debugger. This will start Matlab in the correct directory, so type run and
then start the simulation as usual. Break points can be set in the DLL source files to
stop the simulation for debugging.

GNU gdb Debugger Debugging compiled S-functions with GNU gdb from within Matlab is
slightly more complicated than doing so with MSVC++. The following steps outline the
general procedure:

1. Rebuild the required MEX-file(s) and libraries with the -g option; -g3 provides more
robust debug information in the object code. This can be done by setting:

COMPILE_FLAGS = ${DEBUG_COMPILE_FLAGS}

in the file src/make.opts line 67.

2. start Matlab with the gdb debugger in the m-file directory, rather than the usual
MultiUAV directory

$ cd m-file
$ matlab -Dgdb

If you are using a debugger other than gdb, substitute that name after the -D option.

3. Once the debugger has loaded, continue loading Matlab by typing

(gdb) run
Starting program: /path/to/matlab
.
.
(no debugging symbols found)...[New Thread 1024 (LWP 21412)]

If you do not require use of the Java front-end, and do not wish to wait for the splash
screen, continue the initial load of Matlab by instead typing

(gdb) run -nojvm -nosplash

4. After Matlab starts, enable MEX debugging by typing the following at the command
prompt:

>> InitializeGlobals
>> dbmex on

This will initialize the simulation and enable MEX debugging.

5. Run the simulation as normal, e.g. select Run Simulation from the GUI.

6. Periodically, the process will enter the debugger as shared library entry points are found,
e.g.:

Program received signal SIGUSR1, User defined signal 1.
0x40ccd621 in kill () from /lib/libc.so.6
(gdb) c
Continuing.
MEX FILE: ../src/lib/linux/TacticalVehicle.mexglx entry point located
at address 0x432aa9c2

6.4. MEMORY TYPES AND USAGE 43

Load the MEX-file symbol table by issuing the following command:
share ../src/lib/linux/TacticalVehicle.mexglx

Add breakpoints at the debugger prompt and issue a "continue" to resume
execution of MATLAB.

7. To place a break point in CTacticalVehicle::waypointGetGuidance() member func-
tion, which occurs in src/TacticalVehicleDLL/TacticalVehicle.cpp at line 35, en-
ter:

(gdb) b TacticalVehicle.cpp:86
Breakpoint 1 at 0x4328aa5c: file TacticalVehicle.cpp, line 35.

If you wish to place a break point by using a function prototype, enter:

(gdb) b ’CTacticalVehicle::<TAB>

where <TAB> indicates that you type the TAB key to see a completion list of currently
loaded symbols that begin with the CTacticalVehicle:: namespace. The completed
break point is set by typing a few more characters to disambiguate the function name
and TAB-completing again to obtain:

(gdb) b ’CTacticalVehicle::waypointGetGuidance()’
Breakpoint 2 at 0x4329c03d: file TacticalVehicle.h, line 86.

8. At each remaining shared library entry point is discovered, continue the debugger

(gdb) c

9. Each time the break point is encountered, you will see:

Breakpoint 3, 0x4329c03d in CTacticalVehicle::waypointGetGuidance()
(this=0x82907c8) at TacticalVehicle.h:86

86 CWaypointGuidance& waypointGetGuidance(){...};
Current language: auto; currently c++
(gdb)

where you may enter debugging commands as permitted by gdb.

6.4 Memory Types and Usage

6.4.1 Output of Blocks

The outputs of blocks can act as memory. The value of the block outputs is held until the block is
updated. If the block is disabled the output can be set to hold its last updated value.

6.4.2 Data Store Blocks

These blocks can be used to store data inside of a block which is only visible within that block and
inside subsystems of that block. This is a good way to save data in an object-oriented fashion.

44 CHAPTER 6. MODIFICATIONS TO THE SIMULATION

6.4.3 Global Memory

The use of global memory should be a last choice since it makes the simulation less modular and
thus less flexible. For this simulation, global memory has been used for structured storage, and
globally constant variables and structures. Note, the term constant is used to imply that the value
of the variable is not intended to change during the simulation. There is no mechanism to enforce
this. The following variables/structures are implemented in global memory:

6.5 Directory Structure

The supporting files for the MultiUAV2 simulation are located in various directories under the
MultiUAV directory, see Figure 2.1.

6.6 Procedures for Common Modifications

6.6.1 Changing Number of Targets

1. Change the global variable MaxNumberTargets to the desired value. Note: MaxNumberTargets
is initialized in the function InitializeGlobals.

2. Reinitialize the simulation, i.e. run the script XtremeReinitialize.

3. Open the MultiUAV2 Simulink diagram, i.e. s-model/MultiUAV.mdl, and/or update the
diagram.

4. Add a new, or copy of an existing, target block to the Targets block, i.e. MultiUAV.Targets.

5. Add/change the code in InitializeGlobals required to initialize the new target(s).

6.6.2 Changing Number of Vehicles

1. Change the global variable MaxNumberVehicles to the desired value. Note: MaxNumberVehicles
is initialized in the function InitializeGlobals. Also change the number of active vehicle
in the variable g ActiveVehicles.

2. Reinitialize the simulation, i.e. run the script XtremeReinitialize.

3. Open the MultiUAV2 Simulink diagram, i.e. s-model/MultiUAV.mdl, and/or update the
diagram.

4. Add a new, or copy of an existing, vehicle block to the Vehicles block, i.e. MultiUAV.Vehicles.

5. Add/change the code in InitializeGlobals required to initialize the new vehicle(s).

6.6.3 Adding New Types of Vehicles/Targets

Follow the procedures for changing number of vehicles/targets, but add a new/modified block. It
is probably best to make a copy of the existing blocks and then modify the copy. Make sure to
implement any new messages required by the new vehicle/target.

6.6. PROCEDURES FOR COMMON MODIFICATIONS 45

6.6.4 Changing Targets Dynamics

Target dynamics are implemented in the function TargetPostionS. By default the targets are
stationary, but this can be changed by adding dynamics to the TargetPostionS function.

6.6.5 Adding a New Assignment Algorithm

Most of the assignment algortihms implemented in the MultiUAV2simulation are contained in the
Calculate Assignment block of the CooperationManager, i.e. MultiUAV.Vehicles.UAV1.Embedded-
FlightSoftware.CooperationManager.Calculate Assignment This is the best place to add a
new assignment algorithm. To add the new algorithm:

1. Open the file CreateStructure.m and add a new assignment type to the Assignment-
TypeDefinitions structure. item Reinitialize the simulation, i.e. run the script XtremeRe-
initialize.

2. Add a new enabled subsystem containing the new assignment algorithm to the Calculate
Assignment block.

3. Make the connections necessary to enable the new assignment block when the new assignment
type is selected in the AssignmentAlgorithm global variable.

6.6.6 Changing Sensor Simulation

The sensor simulation consists of a sensor footprint and a simple automatic target recognition
(ATR) simulation. To change the sensor footprint see the next section. The ATR simulation is
contained in the block ATRSingle, MultiUAV.Vehicles.UAV1.EmdbeddedFlightSoftware.Sensor-
Manager.ATRSingle, and is implemented in the function ATRFunctionsSingleS. The ATRSingle
block uses the following information: which targets are in the sensor, the relative heading of the
targets and the sensing vehicle, and the truth state of the target. This configuration can be used
by other type of sensor simulations.

6.6.7 Changing Sensor Footprint

The sensor footprint is implemented in C++ as part of the TacticalVehiclDLL s-function. It is
implemented in the files SensorFootprint.cpp and SensorFootprint.h These files can be found
in the directory MultiUAV2/src/TacticalVehicleDLL. To change the sensor footprint:

1. Modify an existing, or add a new, sensor case in the function CSensorFootprint::Sensor.

2. Add a new sensor type the enumerated list, i.e. enSensorType in the file SensorFootprint.h.

3. Change the default sensor in the Sensor class constructer to the new type.

4. Recompile the TacticalDLL s-functions.

6.6.8 Changing Vehicle Dynamics

Vehicle dynamics are governed by two files, DATCOM.dat and Parameters.dat. To change ve-
hicle dynamics create a new DATCOM.dat file with the aerodynamic forces and moments and a
new Parameters.dat with physical and control gain parameters. Alternatively, the dynamics

46 CHAPTER 6. MODIFICATIONS TO THE SIMULATION

can be changed by changing the Vehicle & Tactical Maneuvering Dynamics s-function block, i.e.
MultiUAV.Vehicles.UAV1.Aircraftdynamics.Vehicle & Tactical Maneuvering Dynamics.

6.6.9 Changing Initial Search Pattern

The initial search pattern is generated in the function CalculateWaypoints. There is a switch
statement in CalculateWaypoints that is used to select the initial search pattern. To add a new
search pattern, add a new case to this switch function.

6.6.10 Changing Simulation Sample Time

MultiUAV2 is setup to be a fixed time step simulation with no continuous states. The fixed time
step is set using the global variable, GlobalSampleTime. GlobalSampleTime is nominally set to
0.1 seconds. Changing the value in GlobalSampleTime and reinitializing the simulation will change
the sample time. Note: changing the sample time can cause unexpected results, i.e. targets not
being discovered, vehicles flying in circles, etc.

6.6.11 Adding Communication Messages

1. Open the file CreateStructure.m

2. Decide on the message structure to use, i.e. either g CommunicationsMemory for simulated
communication messages or g TruthMemory for simulation truth information.

3. Add new message structure as a case in the switch structure, i.e.:

case ’MSG_PositionID’ % new message structure
NewStructure = struct(...

’Title’,’PositionID’,...
’ID’,0, ...
’Enabled’,1, ...
’NumberSenders’,MaxNumberVehicles, ...
’Data’,{[]}, ...
’IndexStorageID’,[1], ...
’IndexStorageTimeStamp’,[2], ...
’VehicleIDIncluded’,[1], ...
’IndexNorth’,[2], ...
’IndexEast’,[3], ...
’IndexHeading’,[4], ...
’NumberEntries’,(4), ...
’SizeToPreAllocate’,(AllocationsPer100Sec*5*g_ActiveVehicles), ...
’TotalNumberMessagesAllocated’,0, ...
’LastMessageIndex’,0, ...
’DefaultMessage’,[], ...
’MessageDelay’,0 ...

);

4. Add a call to CreateStructure() with the new case label to the NewStructure.Messages
cell array, for the selected message structure, i.e.

6.6. PROCEDURES FOR COMMON MODIFICATIONS 47

Figure 6.1: Cooperation Library.

NewStructure.Messages = { ...
CreateStructure(’MSG_ETACostToSearch’);
CreateStructure(’MSG_PositionID’);
CreateStructure(’MSG_PositionID’)

};

Note: The last entry in this cell array does not have a semicolon.

5. Save the file CreateStructure.m

6. Reinitialize the simulation, i.e. run the script XtremeReinitialize.

7. Open and unlock the cooperation library, see Fig 6.1, i.e. s-model/Cooperative.mdl

8. Edit the mask of the send block coresponding to the target message structure, i.e. SendMessage
for g CommunicationsMemory or SendTruth for g TruthMemory.

9. Select the Initialization tab. Select select message type: ...in the prompt window. Add the new
message’s Title string to the Popup strings:, separated by a |, i.e. ETACostToSearch|PositionID

10. Open the MultiUAV2 Simulink diagram, i.e. s-model/MultiUAV.mdl, and/or update the
diagram.

11. Disable the library link to one of the receive blocks, for the target structure type, i.e.
MultiUAV.Vehicles.UAV1.RecieveMessages.RecieveCommunications for g Communicat-
ionsMemory, or MultiUAV.Vehicles.UAV1.RecieveTruth.RecieveTruth for g TruthMemory.

12. Edit the receive block to add the new connections and lables.

13. Restore the library link and choose Update Library.

14. Add the new blocks required to send the message. Note: the send blocks can be configured
for a static or growing message que and a drop down menu is used to select the message, see
Figures 4.7 and 4.6.

15. Add/Change blocks to process the new message.

48 CHAPTER 6. MODIFICATIONS TO THE SIMULATION

Appendix A

M-Function Reference

ATRFunctions.m - calculates single and multiple ATR values and BDA values.

AVDSData2Workspace.m - This function saves AVDS Playback data from Simulink to the
Global Workspace.

CalculateAttackHeading.m - calculate the best heading(s) to attack a target.

CalculateBDAHeading.m - calculate the best heading(s) to BDA a target.

CalculateBenefit.m - called by CapTransShip.m to calculate benefit of assignment.

CalculateDistanceToGo.m - calculates the distance to the assigned target stand-off point cal-
culates the distance from the vehicle’s current position to the assigned target stand-off point.

CalculateWaypoints.m - calculates and saves waypoints that represent initial search patterns
for the vehicles.

CapTransShipIO.m - used to setup the inputs to the CapTransShip s-function.

CreateExplosion.m - this functions calculates the vectors necessary to display an explosion in
AVDS.

CreateStructure.m - create a new copy of a structure of the given type. This function is used
to aggregate all of the structure creation to make it easier to track memory usage.

CreateVehicleGraphic.m

FindRequiredTask.m - this function returns a task type based on the given target state.

GUIMultiUAV.m - This is the callback function for the graphical user interface.

InitializeGlobals.m - this script sets up the MultiUAV2 global simulation variables and structures.

InitializeTargets.m - sets the position, orientation and type of the targets.

InitializeTargetTypes.m - sets the target type data in the global target type array.

MinimumDistance.m - calculates the optimal trajectory to cause a vehicle’s sensor to pass over
a target in a given direction.

49

50 APPENDIX A. M-FUNCTION REFERENCE

MinimumDistanceCircle.m - calculates the trajectory for a vehicle between two points, given
direction and stand-off constraints.

ModifySearchWaypoints.m - modifies return to search waypoints to change search scenarios.

PlotOutput.m - animates the vehicle trajectories and target data from the MultiUAV2 simulation.

PlotProbabilityCorrectTarget.m - plots the probability correct target for rectangular targets.

ProbabilityCorrectTarget.m - calculates probability of correct target report given viewing as-
pect angle. This is implemented for a rectangular target.

ReplanRoutes.m - calculates and saves the cooperation metrics and trajectories to all of the
known valid targets.

RouteSelection.m - selects waypoints to use for the assigned action.

run.m - this script sets up the MultiUAV2 global simulation parameters/memory and opens the
GUI figure which calls other initialization functions.

RunSimulinkDebugger.m - this function starts the Simulink debugger, used to remember the
command.

SaveAVDSData.m - saves the AVDS playback from the global workspace to a file and creates
an AVDS playback configuration file.

SearchBenefit.m - calculates value of searching relative to other tasks.

SimulationControl.m - this function is used to restart the simulation during monte carlo runs.

SimulationFunctions.m - used to initialize global simulation structures.

Summary.m – This function writes the final results of each run to a file.

TargetBombed.m - calculates the status of the target, alive or dead.

TargetBombedLog.m - tracks bomb drops.

TargetPositon.m - returns the true position of a target based on its ID number.

TargetStatus.m - monitors the status of the targets. Replan is necessary if any new targets are
discovered.

TargetStatusCheck.m - checks the status of the targets for output.

TargetStatusState.m - calculates the state of a target based on past state and other data.

TaskBenefit.m - calculate the benefit of the specified vehicle performing a specified task on the
specified target.

TestMinimumDistance.m - this is a simple function to debug the functions MinimumDistance
& CalculateDistance.

TestTargetAngles.m - this is a simple function to debug the target angle/template functions

51

TestVehicleGraphics.m - this is a simple function used to debug the CreateVehicleGraphic
function

TestWaypoints.m - this is a simple function to debug the functions MinimumDistance & Calc-
ulateDistance.

WaypointsAddMinSeparation.m - adds extra waypoints along the circular segments of the
trajectory. In order to cause the vehicle to better track the commanded trajectory, extra
waypoints are added to the circular portions of the trajectory.

WeaponsRelease.m - calculate truth results for weapons release.

WritePlaybackInit.m - creates and adds to an AVDS Playback configuration file.

52 APPENDIX A. M-FUNCTION REFERENCE

Appendix B

Global Variables Reference

g ActiveTargets (constant 1x1) The number of active Targets. Allows the user to
use less than the g MaxNumberTargets.

g ActiveVehicles (constant 1x1) The number of active Vehicles. Allows the user to
use less than the g MaxNumberVehicles.

g ASSERT STATUS Controls the operation of assertions. Used for debugging.
g AssignmentAlgorithm (constant 1x1) The active assignment algorithm, see TypeAssign-

ment for assignment algorithm types.
g AssignmentDelayEstimate (constant 1x1) Used by distributed algorithms. Estimate of the

time it will take to compute the assignment.
g AssignmentTimeDelay (constant 1x1) The maximum time difference allowed between

time stamps on assignment data from the vehicles.
g AssignToSearchMethod (constant 1x1) Used by distributed algorithms.

g ATRThreshold (constant 1x1) The threshold to declare a target classified.
g AVDSTargetCells (cell array g MaxNumberTargets x1) Used to store target data

for AVDS playback.
g AVDSVehicleCells (cell array 8x1) Used to store vehicle data for AVDS playback.

g BDAFalseReportPercentage (constant 1x1) The percentage of time BDA sensor will provide
a false report [0.0, 1.0].

g CommandTurnRadius (constant 1x1) The desired turn radius, in feet.
g BiddingIncrement (constant 1x1) Used by distributed algorithms.

g CommDelayDiscHoldOrder (constant 1x1) Discrete hold order to delay calculation of the co-
operation assignment algorithm.

g CommDelayMajorStepsOther (constant 1x1) Fixed communication delay, measured in major
model updates.

g CommDelayMajorStepsSelf (constant 1x1) Fixed local communication processing delay, mea-
sured in major model updates.

g CooperativeATR (constant 1x1) Turns off (0) or On (1) the vehicles’ ability to use
other vehicles single ATR values in the combined ATR calculation.

g CoordinationDelayDen (constant 1x?) Discrete n-order hold, i.e. coefficients of the de-
nominator monomial. Note this is specified by g CommDelayDisc-

53

54 APPENDIX B. GLOBAL VARIABLES REFERENCE

HoldOrder.

g Debug (constant 1x1) A flag used to turn on/off debug printouts.

g DefaultMach (constant 1x1) If there is no Mach number chosen for waypoints
this value is used.

g DefaultWaypointAltitude (constant 1x1) If there is no Altitude chosen for waypoints this
value is used.

g EnableTarget (constant 10x1) In this array, the elements correspond to the tar-
gets. If the element is set equal to 0, the target is disabled. To
enable the target the element is set equal to a Target ID number.

g EnableTargetDefault (constant g MaxNumberTargets x?) IDs of the targets to enable
by default.

g EnableVehicle (constant 8x1) In this array, the elements correspond to the ve-
hicles. If the element is set equal to 0, the vehicle is disabled. To
enable the threat the element is set equal to a Vehicle ID number.

g EnableVehicleDefault (constant 8x1) IDs of the vehicles to enable by default.

g isMonteCarloRun (constant 1x1) Flag used to setup simulation for a Monte-Carlo
simulation.

g LengthenPaths (constant 1x1) Flag used to enable path lengthening in the tra-
jectory planning algorithm.

g MaxNumberDesiredHeadings (constant 1x1) Maximum number of desired headings for target
classification.

g MaxNumberTargets (constant 1x1) Maximum number of targets allowed in the simu-
lation.

g MaxNumberVehicles (constant 1x1) Maximum number of vehicles allowed in the sim-
ulation.

g MaxReassignmentDeltaTime (constant 1x1) Maximum time between reassignments.

g MetersToFeet (constant 1x1) Used to convert from meters to feet.

g NumberTargetOutputs (constant 1x1) Number of outputs from target blocks.

g OneTimeInitialization (constant 1x1) Flag used to insure that certain initialization func-
tion are only executed once.

g OptionAssignmentWeight (constant 1x1) Controls how assignment weights are calculated
(CapTransShipIO.m).

g OptionBackToSearch (constant 1x1) Controls how vehicles return to search (Route-
Selection.m)

g OptionModifiedWaypoints (constant 1x1) Set to a non-zero value to force the use of search
waypoints that are modified in the function ModifySearchWay-
points().

g OptionSaveDataAVDS (constant 1x1) Controls saving of AVDS data. Turning this off
will increase simulation speed.

g OptionSaveDataPlot (constant 1x1) Controls saving of plot data. Turning this off will
increase simulation speed.

55

g PauseAfterEachTimeStep (constant 1x1) Flag the causes Simulink to go into pause mode
at the end of each major time step.

g PlotAxesLimits (constant 1x4) These are the limits for the axes in the animated
plot.

g ProbabilityID (constant 5x5) A matrix of probabilities that an encounter with
a target will result in an estimate of a given target type, i.e. Con-
fusion matrix.

g ProbabilityOfKill (constant 1x1) Probability that a bomb drop will kill a target if
it is within the bomb’s kill radius of the target.

g SampleTime (constant 1x1) The sample time used for all of the blocks by
default.

g SaveAlgorithmTime (variable 1x1) Storage for time it takes to execute the multiple
task tour assignment algorithms.

g SaveAlgorithmTimeFlag (constant 1x1) Flag to control saving the time it takes to execute
the multiple task tour assignment algorithms.

g Scenario (constant 1x1) Counter for Monte-Carlo scenario number.

g SearchSpace (constant 1x4) Rectangular area searched by the vehicles.

g Seed (constant 1x1) Seed for the random number generator. With no
changes to the simulation, using the same seed in different simula-
tion runs will produce the same random configuration.

g SensorLeadingEdge ft (constant 1x1) Position of the leading edge of the sensor footprint,
in feet, with respect to the center of gravity of the vehicles. Note:
This valuue is only used as a convenience for calculations the actual
sensor configuration is set in the TacticalVehicleDLL, see §5.4.

g SensorRollLimitDeg (constant 1x1) The amount a vehicle can roll before the sensor is
disabled (degrees).

g SensorTrailingEdge ft (constant 1x1) Position of the trailing edge of the sensor foot-
print, in feet, with respect to the center of gravity of the vehicles.
Note: This valuue is only used as a convenience for calculations
the actual sensor configuration is set in the TacticalVehicleDLL,
see §5.4.

g SensorWidth ft (constant 1x1) Width of the sensor footprint, in feet. Note: This
valuue is only used as a convenience for calculations the actual
sensor configuration is set in the TacticalVehicleDLL, see §5.4.

g SensorWidth m (constant 1x1) Width of the sensor footprint, in meters. Note:
This valuue is only used as a convenience for calculations the actual
sensor configuration is set in the TacticalVehicleDLL, see §5.4.

g SimulationRunNumber (constant 1x1) Counter to keep track of simulation runs during
Monte-Carlo simulations.

g SimulationTime (constant 1x1) Current simulated time, in seconds, of the simula-
tion run. Simulink updates this time during calls to the function,
InitFunctionsS.

g StopTime (constant 1x1) The time to stop the simulation.

56 APPENDIX B. GLOBAL VARIABLES REFERENCE

g SummaryFileName (constant char array)

g TargetPositions (g MaxNumberTarget x g TargetPositions.Numberentries) used
to predefine positions of the targets. Used during initialization.

g TargetSpace (constant 1x4) Rectangular region limits for random target place-
ment.

g VerificationOn (constant 1x1) Flag to turn On/Off verification in the function,
TaskBenefit.

g WaypointCells (cell 8x1) These cells are used to store the current waypoints for
each vehicle. The vehicle s-function reads the waypoints from these
cells.

g WaypointFlags (constant 8x1) This is an array of flags used by each vehicle to
signal that new waypoints have been entered in the vehicle’s ele-
ment of the g WaypointCells.

g WaypointStartingIndex (constant 8x1) This is the waypoint index used when waypoints
are reinitialized in TacticalVehicleDLL.

Appendix C

Global Structures Reference

C.1 Vehicle Memory (g VehicleMemory)

(array of structures) The main memory for the vehicle blocks. Each structure in this array is used
as memory for a vehicle. The structures contain structures for each of the managers. This gives
each manager a structure for data storage.
g_VehicleMemory(:).

VehicleType: 2
Dynamics: [1x1 struct], see §§C.1.1

WeaponsManager: [1x1 struct], see §§C.1.2
TargetManager: [1x1 struct], see §§C.1.3

CooperationManager: [1x1 struct], see §§C.1.4
RouteManager: [1x1 struct], see §§C.1.5
SensorManager: [1x1 struct], see §§C.1.6

TacticalManeuveringManager: []
MonteCarloMetrics: [1x1 struct], see §§C.3

C.1.1 Dynamics Structure

g_VehicleMemory(:).Dynamics.
VTrueFPSInit: 370
PsiDegInit: 0

PositionXFeetInit: -4.593175853000000e+003
PositionYFeetInit: -9.842519685000001e+002
PositionZFeetInit: 675
NumberBombsInit: 1

FuelLB: 15000

C.1.2 Weapons Manager Structure

g_VehicleMemory(:).WeaponsManager.
NumberBombsDropped: 1

57

58 APPENDIX C. GLOBAL STRUCTURES REFERENCE

C.1.3 Target Manager Structure

g_VehicleMemory(:).TargetManager.
LastCompletedTask: 0

TotalAttacks: [10x1 double]
SensedTargetType: [10x1 double]

LastReportedState: [10x1 double]

C.1.4 Cooperation Manager Structure

g_VehicleMemory(:).CooperationManager.
AssignmentTimeDelay: 4.000000000000000e-001

WaypointMemory: {8x1 cell}
SavedHeading: [8x10x6 double]

TaskList: [10x4 double]
TargetSchedule: []

ReplanRound: [0 0]
LastRoundComplete: [0 0]
AuctionInformation: [1x1 struct]

CurrentBenefits: [1x1 struct]
AuctioneerDuty: []
MessageNumber: 0

PendingWaypoints: [42x12 double]

C.1.5 Route Manager Structure

g_VehicleMemory(:).RouteManager.
TargetIDSaved: [10x1 double]

PsiSaved: [10x1 double]
CommandTurnRadius: 2000

AssignmentTimeDelay: 5.000000000000000e-001
SaveWaypoints: []

UsingOriginalSearchWaypoints: 0
AlternateWaypoints: [32x12 double]

AlternateWaypointIndex: 2
OffsetToAlternateIndex: 11

LastSearchX: 1.504390255589156e+004
LastSearchY: -9.842519719314307e+002
LastSearchZ: 675

LastSearchPsi: 1.570796325902963e+000
AssignedTarget: -1
AssignedTask: -1

C.1.6 Sensor Manager Structure

g_VehicleMemory(:).SensorManager.
NumberSightings: [10x8 double]
ATRSingleTime: [10x8x4 double]

C.2. VEHICLE INPUT FILES STRUCTURES 59

ATRSingleMetric: [10x8x4 double]
ATRSingleViewingAngle: [10x8x4 double]

ATRSingleEstPose: [10x8x4 double]
ATREstTargetType: [10x8x4 double]

BDASave: [10x10 double]

C.2 Vehicle Input Files Structures

This structure contains two substructures and is used to configure parameters for the vehicle dy-
namics simulation functions.

C.2.1 g VehicleInputFiles

g_VehicleInputFiles =
datcom: [1x1 struct]
params: [1x1 struct]

C.2.2 DATCOM Input Parameters

g_VehicleInputFiles.datcom.
name: ’..\InputFiles\DATCOM.dat’

version: 1
isSubtractBaseTables: 1

C.2.3 Parameter Inputs

g_VehicleInputFiles.params.
name: ’..\InputFiles\Parameters.dat’

version: 1.400000000000000e+000

C.3 Monte-Carlo Metrics (g MonteCarloMetrics)

This structure is used to save data during Monte-Carlo simulations.

g_MonteCarloMetrics =
TotalSearchTimeSeconds: 0

AliveTimeSeconds: 0
TargetStateTimes: []

Target1PostionHeading: [10x1 struct]
NumberAuctionCalls: 0

TotalNumberAuctionBids: []
RecalculateTrajectory: 0

SaveMultipleTaskDataFlag: 0
LastMultipleTaskSaveTime: 0

MultipleTaskSaveCount: 0
MultipleTaskSaveFile: ’SaveSingle’

MultipleTaskSaveFileVersion: 1
DirectoryName: ’MonteCarloData’

60 APPENDIX C. GLOBAL STRUCTURES REFERENCE

C.4 Entity Types (g EntityTypes)

A structure that enumerates all available entity types in the simulation.

g_EntityTypes =
Aircraft: 1
Munition: 2
Target: 3

NumberEntities: 3

C.5 Color Structures

C.5.1 g Colors

This structure contains color definitions used in the simulation.

g_Colors =
LightGray: [6.40000000e-001 6.40000000e-001 6.40000000e-001]
LightRed: [6.40000000e-001 0 0]

LightGreen: [0 6.40000000e-001 0]
LightBlue: [0 0 6.40000000e-001]

LightYellow: [6.40000000e-001 6.40000000e-001 0]
LightMagenta: [6.40000000e-001 0 6.40000000e-001]

LightCyan: [0 6.40000000e-001 6.40000000e-001]
LightOrange: [8.00000000e-001 4.00000000e-001 2.00000000e-001]

DarkGray: [4.00000000e-001 4.00000000e-001 4.00000000e-001]
DarkRed: [4.00000000e-001 0 0]

DarkGreen: [0 4.00000000e-001 0]
DarkBlue: [0 0 4.00000000e-001]

DarkYellow: [4.00000000e-001 4.00000000e-001 0]
DarkMagenta: [4.00000000e-001 0 4.00000000e-001]

DarkCyan: [0 4.00000000e-001 4.00000000e-001]
DarkOrange: [4.00000000e-001 1.60000000e-001 8.00000000e-002]

Black: [0 0 0]
WhiteDull: [9.00000000e-001 9.00000000e-001 9.00000000e-001]

White: [1 1 1]
AVDSLightGray: 4.288914339000000e+009
AVDSLightRed: 4.278190243000000e+009

AVDSLightGreen: 4.278231808000000e+009
AVDSLightBlue: 4.288872448000000e+009

AVDSLightYellow: 4.278231971000000e+009
AVDSLightMagenta: 4.288872611000000e+009

AVDSLightCyan: 4.288914176000000e+009
AVDSLightOrange: 4.281558732000000e+009

AVDSDarkGray: 4.284900966000000e+009
AVDSDarkRed: 4.278190182000000e+009

AVDSDarkGreen: 4.278216192000000e+009
AVDSDarkBlue: 4.284874752000000e+009

C.6. TARGET STRUCTURES 61

AVDSDarkYellow: 4.278216294000000e+009
AVDSDarkMagenta: 4.284874854000000e+009

AVDSDarkCyan: 4.284900864000000e+009
AVDSDarkOrange: 4.279511142000000e+009

AVDSBlack: 4.27819008e+009
AVDSWhiteDull: 4.293256677000000e+009

AVDSWhite: 4.294967295000000e+009
AVDSRed255: 255

AVDSGreen255: 65280
AVDSBlue255: 16711680

AVDSTransparent255: 4.27819008e+009
AVDSRed1: 1

AVDSGreen1: 256
AVDSBlue1: 65536

AVDSTransparent1: 16777216
ColorsAVDS: [4x1 double]

C.5.2 g VehicleColors

Contains definitions for the color of the vehicles in matrix form.

g_VehicleColors =
ColorVehicles: [8x3 double]

ColorVehiclesAVDS: [8x1 double]

C.6 Target Structures

C.6.1 Global Target Position Definitions (g TargetPositionDefinitions)

This structure defines the indices used in the g TargetPositions matrix.

g_TargetPositionDefinitions =
PositionX: 1
PositionY: 2
PositionZ: 3

PositionPsi: 4
PositionType: 5

C.6.2 Target Main Memory

The memory for simulation events that effect the all of target blocks.

g_TargetMainMemory =
BombLog: [4x4 double]

C.6.3 Target Memory

(array of structures) The main memory for the individual target blocks. Each structure in this
array is used as memory for a target.

62 APPENDIX C. GLOBAL STRUCTURES REFERENCE

g_TargetMemory =
ID: 1

PositionX: 1.855757452224400e+004
PositionY: -2.828167393376042e+003
PositionZ: 0

Psi: 3.895615558219653e-001
Type: 1
Alive: 0

NumberBombsChecked: 4

C.6.4 TargetStates

Contains information concerning the target states such as the number of states, state description
strings and state index definitions.

g_TargetStates =
StateStrings: {6x1 cell}

IncAttack: 100
IncReset: 10000

StateUndefined: -1
StateNotDetected: 0

StateDetectedNotClassified: 1
StateClassifiedNotAttacked: 2

StateAttackedNotKilled: 3
StateKilledNotConfirmed: 4

StateConfirmedKill: 5
StateUnknownTarget: 6

NumberStates: 7
ColorTargetStates: [8x3 double]

ColorTargetStatesAVDS: [8x1 double]

C.6.5 TargetTypes

(array of structures) Each of these structures contains the information that defines the attributes of
a target type. These attributes are: length, width, height, best viewing angles, a flag to differentiate
targets from non-targets, and a numerical value for the target type.

g_TargetTypes(:) =

Length: 20
Width: 10

Height: 10
BestViewingHeadingsRad: [4x1 double]

IsTarget: 1
TargetValue: 10

LethalRangeMax: []
LethalRangeMin: []

ProbKillMax: 2.000000000000000e-001
ProbKillMin: 0

C.7. ASSIGNMENT ALGORITHM STRUCTURES 63

C.7 Assignment Algorithm Structures

C.7.1 g Tasks

Contains information concerning the tasks such as the number of tasks, task description strings
and task index definitions.

g_Tasks =
TaskStrings: {7x1 cell}
Undefined: -1

ContinueSearching: 0
Classify: 1
Attack: 2
Verify: 3

TasksComplete: 4
ClassifyAttack: 4

NumberTasks: 5
NotInPlay: -1

Unassigned: 0
Assigned: 1
Completed: 2

C.7.2 g TypeAssignment

Enumerates the different assignment algorithms implemented in the simulation.

g_TypeAssignment =
CapTransShip: 1

AuctionJacobi: 2
ItCapTransShip: 3

ItAuctionJacobi: 4
RelativeBenefits: 5

DistItCapTransShip: 6
DistAuctItCapTransShip: 7

NumberEntries: 7

C.7.3 g AssignmentTypes

Used by the distributed algorithms.

g_AssignmentTypes =
Individual: 1

Common: 2

C.8 Waypoint Structures

C.8.1 g WaypointDefinitions

Enumerates the indices of the waypoints.

64 APPENDIX C. GLOBAL STRUCTURES REFERENCE

g_WaypointDefinitions =
PositionX: 1
PositionY: 2
PositionZ: 3

MachCommand: 4
MachCommandFlag: 5
SegmentLength: 6
TurnCenterX: 7
TurnCenterY: 8

TurnDirection: 9
WaypointType: 10
TargetHandle: 11

ResetVehiclePosition: 12
NumberEntries: 12

C.8.2 g WaypointTypes

Defines the different types of waypoints available. EndTask and EndTaskReplan are qualifier flags
to mark the last waypoint in the assignment. These flags are multiplied by QualifierMultiple
before being added to the waypoint type.

g_WaypointTypes =
Search: 1
Enroute: 2

Classify: 3
Attack: 4
Verify: 5

StartPoint: 6
EndPoint: 7
Unknown: 8
EndTask: 100

EndTaskReplan: 200
QualifierMultiple: 100

C.9 Communication Message Structures

These are the structures that implement message passing for communications, see Chapter 4.

C.9.1 g CommunicationMemory

g_CommunicationMemory =
InBoxes: [11x1 struct]

Messages: {12x1 cell}
DelayMatrix: [11x11 double]

NumberMessages: 12
MemoryAllocationMetric: [12x1 double]
InBoxAllocationMetric: [11x1 double]

C.9. COMMUNICATION MESSAGE STRUCTURES 65

MsgIndicies: [1x1 struct]
Transport: [1x1 struct]

C.9.2 InBoxes

g_CommunicationMemory.InBoxes(:) =
g_TruthMemory.InBoxes(:) =

MessageHeaders: []
IndexTimeStamp: 1

IndexTimeActivate: 2
IndexMessageID: 3

IndexMessagePointer: 4
IndexMessageEvaluated: 5

NumberEntries: 5
SizeToPreAllocate: 400

TotalNumberMessageHeadersAlloca: 800
LastMessageHeaderIndex: 439

C.9.2.1 Simulation Object IDs

g_ObjectMessageIDs =
VehicleIDOffset: 0
VehicleIDFirst: 1
VehicleIDLast: 8
TargetIDOffset: 8
TargetIDFirst: 9
TargetIDLast: 9
MiscIDOffset: 9
DataSaveID: 10

VehicleEnableID: 11
NumberMessageIDs: 11
TypeMultiplier: 10000

VehicleType: 1
VehicleTypeShifted: 10000

TargetType: 2
TargetTypeShifted: 20000

MiscType: 3
MiscTypeShifted: 30000
AllVehiclesType: 4

AllVehiclesTypeShifted: 40000
AllTargetsType: 5

AllTargetsTypeShifted: 50000
NumberTypes: 5

C.9.3 Message Transport Type

g_CommunicationMemory.Transport =
g_TruthMemory.Transport =

66 APPENDIX C. GLOBAL STRUCTURES REFERENCE

TransportType: 0
MatlabMatrix: 0

External: 1

C.9.4 Communication Message Indices

g_CommunicationMemory.MsgIndicies =
ETACostToSearch: 1

PositionID: 2
WaypointIndex: 3
TriggerReplan: 4

ATRSingle: 5
ATRTime: 6

TargetStatus: 7
TargetAttacked: 8
ChangedStatus: 9

SendPositionsFlag: 10
TaskBenefits: 11
AuctionData: 12

C.9.5 Communication Messages

The following message structures define what information is communicated between vehicles in the
simulation.

C.9.5.1 Communication Message: ETACostToSearch

Title: ’ETACostToSearch’
ID: 1

Enabled: 1
NumberSenders: 8

Data: []
IndexStorageID: 1

IndexStorageTimeStamp: 2
IndexETATimeStamp: 1

IndexETA: [2 3 4 5 6 7 8 9 10 11]
IndexCost: [12 13 14 15 16 17 18 19 20 21]

IndexToSearch: [22 23 24 25 26 27 28 29 30 31]
NumberEntries: 31

SizeToPreAllocate: 16
TotalNumberMessagesAllocated: 0

LastMessageIndex: 0
DefaultMessage: []
MessageDelay: 0

C.9.5.2 Communication Message: PositionID

Title: ’PositionID’

C.9. COMMUNICATION MESSAGE STRUCTURES 67

ID: 2
Enabled: 1

NumberSenders: 8
Data: [6x80 double]

IndexStorageID: 1
IndexStorageTimeStamp: 2

VehicleIDIncluded: 1
IndexNorth: 2
IndexEast: 3

IndexHeading: 4
NumberEntries: 4

SizeToPreAllocate: 80
TotalNumberMessagesAllocated: 80

LastMessageIndex: 70
DefaultMessage: []
MessageDelay: 0

C.9.5.3 Communication Message: WaypointIndex

Title: ’WaypointIndex’
ID: 3

Enabled: 1
NumberSenders: 8

Data: [3x80 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
IndexWaypointIndex: 1

NumberEntries: 1
SizeToPreAllocate: 80

TotalNumberMessagesAllocated: 80
LastMessageIndex: 72
DefaultMessage: []
MessageDelay: 0

C.9.5.4 Communication Message: TriggerReplan

Title: ’TriggerReplan’
ID: 4

Enabled: 1
NumberSenders: 8

Data: [3x16 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
IndexTriggerReplan: 1

NumberEntries: 1
SizeToPreAllocate: 16

TotalNumberMessagesAllocated: 16

68 APPENDIX C. GLOBAL STRUCTURES REFERENCE

ReplanNoReset: 1
ReplanReset: 2

LastMessageIndex: 1
DefaultMessage: []
MessageDelay: 0

C.9.5.5 Communication Message: ATRSingle

Title: ’ATRSingle’
ID: 5

Enabled: 1
NumberSenders: 8

Data: [43x32 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
ATRTime: 1

IndexSinglATR: [2 3 4 5 6 7 8 9 10 11]
IndexSensedHeading: [12 13 14 15 16 17 18 19 20 21]

IndexEstimatedPoseAngle: [22 23 24 25 26 27 28 29 30 31]
IndexEstimatedType: [32 33 34 35 36 37 38 39 40 41]

NumberEntries: 41
SizeToPreAllocate: 32

TotalNumberMessagesAllocated: 32
LastMessageIndex: 12
DefaultMessage: []
MessageDelay: 0

C.9.5.6 Communication Message: ATRTime

Title: ’ATRTime’
ID: 6

Enabled: 1
NumberSenders: 8

Data: [3x32 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
IndexATRTime: 1
NumberEntries: 1

SizeToPreAllocate: 32
TotalNumberMessagesAllocated: 32

LastMessageIndex: 12
DefaultMessage: []
MessageDelay: 0

C.9.5.7 Communication Message: TargetStatus

Title: ’TargetStatus’
ID: 7

C.9. COMMUNICATION MESSAGE STRUCTURES 69

Enabled: 1
NumberSenders: 8

Data: [12x256 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
IndexTargetStatus: [1 2 3 4 5 6 7 8 9 10]

NumberEntries: 10
SizeToPreAllocate: 256

TotalNumberMessagesAllocated: 256
LastMessageIndex: 101
DefaultMessage: []
MessageDelay: 0

C.9.5.8 Communication Message: TargetAttacked

Title: ’TargetAttacked’
ID: 8

Enabled: 1
NumberSenders: 8

Data: [3x16 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
IndexTargetAttacked: 1

NumberEntries: 1
SizeToPreAllocate: 16

TotalNumberMessagesAllocated: 16
LastMessageIndex: 4
DefaultMessage: []
MessageDelay: 0

C.9.5.9 Communication Message: ChangedStatus

Title: ’ChangedStatus’
ID: 9

Enabled: 1
NumberSenders: 8

Data: [3x256 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
IndexChangedStatus: 1

NumberEntries: 1
SizeToPreAllocate: 256

TotalNumberMessagesAllocated: 256
LastMessageIndex: 97
DefaultMessage: []
MessageDelay: 0

70 APPENDIX C. GLOBAL STRUCTURES REFERENCE

C.9.5.10 Communication Message: SendPositionsFlag

Title: ’SendPositionsFlag’
ID: 10

Enabled: 1
NumberSenders: 8

Data: [3x256 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
IndexSendPositionsFlag: 1

NumberEntries: 1
SizeToPreAllocate: 256

TotalNumberMessagesAllocated: 256
LastMessageIndex: 70
DefaultMessage: []
MessageDelay: 0

C.9.5.11 Communication Message: TaskBenefits

Title: ’TaskBenefits’
ID: 11

Enabled: 1
NumberSenders: 8

Data: []
IndexStorageID: 1

IndexStorageTimeStamp: 2
ReplanRound: [1 2]

TargetStates: [3 4 5 6 7 8 9 10 11 12]
TaskBenefits: [13 14 15 16 17 18 19 20 21 22]

TimeToComplete: [23 24 25 26 27 28 29 30 31 32]
SearchBenefit: 33
NumberEntries: 33

SizeToPreAllocate: 240
TotalNumberMessagesAllocated: 0

LastMessageIndex: 0
DefaultMessage: []
MessageDelay: 0

C.9.5.12 Communication Message: AuctionData

Title: ’AuctionData’
ID: 12

Enabled: 1
NumberSenders: 8

Data: []
IndexStorageID: 1

IndexStorageTimeStamp: 2
TimeStamp: 1

C.10. SIMULATION TRUTH MESSAGE STRUCTURES 71

ReplanRound: [2 3]
BidTarget: [4 5 6 7 8 9 10 11]
BidPrice: [12 13 14 15 16 17 18 19]

BidTargetETA: [20 21 22 23 24 25 26 27]
AssignedTarget: [28 29 30 31 32 33 34 35]
AssignedPrice: [36 37 38 39 40 41 42 43]

AssignedTargetETA: [44 45 46 47 48 49 50 51]
NumberEntries: 51

SizeToPreAllocate: 480
TotalNumberMessagesAllocated: 0

LastMessageIndex: 0
DefaultMessage: []
MessageDelay: 0

C.10 Simulation Truth Message Structures

These are the structures that implement message passing for simulation truth, see Chapter 4.

C.10.1 g TruthMemory

g_TruthMemory =
InBoxes: [11x1 struct]

Messages: {9x1 cell}
DelayMatrix: [11x11 double]

NumberMessages: 9
MemoryAllocationMetric: [9x1 double]
InBoxAllocationMetric: [11x1 double]

MsgIndicies: [1x1 struct]
Transport: [1x1 struct]

C.10.2 InBoxes

See §§ C.9.2.

C.10.3 Message Transport Type

See §§ C.9.3.

C.10.4 Simulation Truth Message Indices

g_TruthMemory.MsgIndicies =
VehicleState: 1

VehicleIsDead: 2
ChangeVehicleStatus: 3

WeaponsRelease: 4
TargetStatus: 5
TargetState: 6

VehicleStateSaveData: 7

72 APPENDIX C. GLOBAL STRUCTURES REFERENCE

TrackList: 8
ChangeAssignmentFlagSelf: 9

C.10.5 Simulation Truth Messages

The following message structures define the messages that contain simulation truth information.

C.10.5.1 Simulation Truth Message: VehicleState

Title: ’VehicleState’
ID: 1

Enabled: 1
NumberSenders: 8

Data: [9x8 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
VehicleLinearPositions: [1 2 3]

VehicleAngularPositions: [4 5 6]
VehicleIsDead: 7
NumberEntries: 7

SizeToPreAllocate: 480
TotalNumberMessagesAllocated: 8

LastMessageIndex: 8
DefaultMessage: []
MessageDelay: 0

C.10.5.2 Simulation Truth Message: VehicleIsDead

Title: ’VehicleIsDead’
ID: 2

Enabled: 1
NumberSenders: 8

Data: [3x8 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
VehicleIsDead: 1
NumberEntries: 1

SizeToPreAllocate: 480
TotalNumberMessagesAllocated: 8

LastMessageIndex: 5
DefaultMessage: []
MessageDelay: 0

C.10.5.3 Simulation Truth Message: ChangeVehicleStatus

Title: ’ChangeVehicleStatus’
ID: 3

Enabled: 1

C.10. SIMULATION TRUTH MESSAGE STRUCTURES 73

NumberSenders: 10
Data: []

IndexStorageID: 1
IndexStorageTimeStamp: 2

NewVehicleStatus: [1 2 3 4 5 6 7 8]
NumberEntries: 8

SizeToPreAllocate: 480
TotalNumberMessagesAllocated: 0

LastMessageIndex: 0
DefaultMessage: []
MessageDelay: 0

C.10.5.4 Simulation Truth Message: WeaponsRelease

Title: ’WeaponsRelease’
ID: 4

Enabled: 1
NumberSenders: 8

Data: [6x8 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
WeaponID: 1

WeaponType: 2
WeaponAimPoint: [3 4]
NumberEntries: 4

SizeToPreAllocate: 480
TotalNumberMessagesAllocated: 8

LastMessageIndex: 5
DefaultMessage: []
MessageDelay: 0

C.10.5.5 Simulation Truth Message: TargetStatus

Title: ’TargetStatus’
ID: 5

Enabled: 1
NumberSenders: 8

Data: [12x8 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
TargetStatus: [1 2 3 4 5 6 7 8 9 10]
NumberEntries: 10

SizeToPreAllocate: 480
TotalNumberMessagesAllocated: 8

LastMessageIndex: 8
DefaultMessage: []
MessageDelay: 0

74 APPENDIX C. GLOBAL STRUCTURES REFERENCE

C.10.5.6 Simulation Truth Message: TargetState

Title: ’TargetState’
ID: 6

Enabled: 1
NumberSenders: 10

Data: [8x10 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
LinearPosition: [1 2 3]

Type: 4
Psi: 5

Alive: 6
NumberEntries: 6

SizeToPreAllocate: 480
TotalNumberMessagesAllocated: 10

LastMessageIndex: 4
DefaultMessage: [8x1 double]
MessageDelay: 0

C.10.5.7 Simulation Truth Message: VehicleStateSaveData

Title: ’VehicleStateSaveData’
ID: 7

Enabled: 1
NumberSenders: 8

Data: [14x8 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
VehicleLinearPositions: [1 2 3]
VehicleAgularPositions: [4 5 6]

SensorOn: 7
RabbitState: [8 9 10]

TargetAssignment: 11
VehicleIsDead: 12
NumberEntries: 12

SizeToPreAllocate: 480
TotalNumberMessagesAllocated: 8

LastMessageIndex: 8
DefaultMessage: []
MessageDelay: 0

C.10.5.8 Simulation Truth Message: TrackList

Title: ’TrackList’
ID: 8

Enabled: 1
NumberSenders: 8

C.10. SIMULATION TRUTH MESSAGE STRUCTURES 75

Data: [74x8 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
ObjectID: [1 2 3 4 5 6 7 8 9 10]

ObjectXYZPsiAlive: [1x60 double]
ObjectType: 71
ObjectMode: 72

NumberEntries: 72
SizeToPreAllocate: 480

TotalNumberMessagesAllocated: 8
LastMessageIndex: 8
DefaultMessage: []
MessageDelay: 0

C.10.5.9 Simulation Truth Message: ChangeAssignmentFlagSelf

Title: ’ChangeAssignmentFlagSelf’
ID: 9

Enabled: 1
NumberSenders: 8

Data: [3x480 double]
IndexStorageID: 1

IndexStorageTimeStamp: 2
ChangeAssignmentFlagTime: 1

NumberEntries: 1
SizeToPreAllocate: 480

TotalNumberMessagesAllocated: 480
LastMessageIndex: 19
DefaultMessage: []
MessageDelay: 0

76 APPENDIX C. GLOBAL STRUCTURES REFERENCE

Bibliography

[1] J. W. Mitchell, S. J. Rasmussen, and A. G. Sparks. Communication requirements in the coop-
erative control of wide area search munitions using iterative network flow. In Proceedings of the
Fourth International Conference on Cooperative Control and Optimization, 2003.

[2] J. W. Mitchell, C. J. Schumacher, P. R. Chandler, and S. J. Rasmussen. Communication
delays in the cooperative control of wide area search munitions via iterative network flow. In
Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2003.

[3] J. W. Mitchell and A. G. Sparks. Communication issues in the cooperative control of unmanned
aerial vehicles. In Proceedings of the Forty-First Annual Allerton Conference on Communica-
tion, Control, & Computing, 2003.

[4] K. E. Nygard, P. R. Chandler, and M. Pachter. Dynamic network flow optimization models for
air vehicle resource allocation. In Proceedings of the American Control Conference, 2001.

[5] S. J. Rasmussen, P. R. Chandler, and C. J. Schumacher. Investigation of single vs. multiple task
tour assignments for uav cooperative control. In Proceedings of the AIAA Guidance, Navigation,
and Control Conference, 2002.

[6] C. J. Schumacher, P. R. Chandler, and S. J. Rasmussen. Task allocation for wide area search
munitions via network flow optimization. In Proceedings of the AIAA Guidance, Navigation,
and Control Conference, 2001.

[7] C. J. Schumacher, P. R. Chandler, and S. J. Rasmussen. Task allocation for wide area search
munitions via iterative network flow optimization. In Proceedings of the AIAA Guidance, Nav-
igation, and Control Conference, 2002.

	MultiUAVSimulation
	1 Background
	1.1 Overview
	1.2 Implementation
	1.3 Using This Manual

	2 Getting Started
	2.1 Setting-up the Simulation
	2.2 Running the Simulation
	2.3 The Graphical User Interface (GUI)
	2.4 Simulation Output
	2.5 Simulation Data Plot Window

	3 Embedded Flight Software (Managers)
	3.1 Overview
	3.1.1 Redundant Central Optimization
	3.1.2 Sequence of Events

	3.2 Tactical Maneuvering Manager
	3.3 Sensor Manager
	3.4 Target Manager
	3.5 Cooperation Manager (Assignment Algorithms)
	3.5.1 Single Assignment Tour vs Multiple Tour Assignment
	3.5.2 Capacitated Transhipment Network (Network Flow) (Single Task Tours)
	3.5.3 Iterative Network Flow (Multiple Task Tours)
	3.5.4 Iterative Auction (Multiple Task Tours)
	3.5.5 Relative Benefits (Multiple Task Tours)
	3.5.6 Distributed Iterative Network Flow (Multiple Task Tours)
	3.5.7 Distributed Iterative Auction (Multiple Task Tours)

	3.6 Route Manager
	3.7 Weapons Manager

	4 Inter-Vehicle/Simulation Truth Communications
	4.1 Overview
	4.2 Communication Requirements
	4.3 Implementation
	4.3.1 Sending Messages
	4.3.2 Receiving Messages

	4.4 Message Exchange Example

	5 Vehicle Dynamics Simulation
	5.1 Overview
	5.2 Tactical Vehicle
	5.3 Variable Configuration Vehicle Simulation
	5.4 Sensor Footprint

	6 Modifications To The Simulation
	6.1 Modifying Simulation Blocks
	6.2 Compiling the Simulation
	6.2.1 Microsoft Visual C++ for Windows
	6.2.2 Unix-like

	6.3 Debugging the Simulation
	6.4 Memory Types and Usage
	6.4.1 Output of Blocks
	6.4.2 Data Store Blocks
	6.4.3 Global Memory

	6.5 Directory Structure
	6.6 Procedures for Common Modifications
	6.6.1 Changing Number of Targets
	6.6.2 Changing Number of Vehicles
	6.6.3 Adding New Types of Vehicles/Targets
	6.6.4 Changing Targets Dynamics
	6.6.5 Adding a New Assignment Algorithm
	6.6.6 Changing Sensor Simulation
	6.6.7 Changing Sensor Footprint
	6.6.8 Changing Vehicle Dynamics
	6.6.9 Changing Initial Search Pattern
	6.6.10 Changing Simulation Sample Time
	6.6.11 Adding Communication Messages

	A M-Function Reference
	B Global Variables Reference
	C Global Structures Reference
	C.1 Vehicle Memory (g_VehicleMemory)
	C.1.1 Dynamics Structure
	C.1.2 Weapons Manager Structure
	C.1.3 Target Manager Structure
	C.1.4 Cooperation Manager Structure
	C.1.5 Route Manager Structure
	C.1.6 Sensor Manager Structure

	C.2 Vehicle Input Files Structures
	C.2.1 g_VehicleInputFiles
	C.2.2 DATCOM Input Parameters
	C.2.3 Parameter Inputs

	C.3 Monte-Carlo Metrics (g_MonteCarloMetrics)
	C.4 Entity Types (g_EntityTypes)
	C.5 Color Structures
	C.5.1 g_Colors
	C.5.2 g_VehicleColors

	C.6 Target Structures
	C.6.1 Global Target Position Definitions (g_TargetPositionDefinitions)
	C.6.2 Target Main Memory
	C.6.3 Target Memory
	C.6.4 TargetStates
	C.6.5 TargetTypes

	C.7 Assignment Algorithm Structures
	C.7.1 g_Tasks
	C.7.2 g_TypeAssignment
	C.7.3 g_AssignmentTypes

	C.8 Waypoint Structures
	C.8.1 g_WaypointDefinitions
	C.8.2 g_WaypointTypes

	C.9 Communication Message Structures
	C.9.1 g_CommunicationMemory
	C.9.2 InBoxes
	C.9.2.1 Simulation Object IDs

	C.9.3 Message Transport Type
	C.9.4 Communication Message Indices
	C.9.5 Communication Messages
	C.9.5.1 Communication Message: ETACostToSearch
	C.9.5.2 Communication Message: PositionID
	C.9.5.3 Communication Message: WaypointIndex
	C.9.5.4 Communication Message: TriggerReplan
	C.9.5.5 Communication Message: ATRSingle
	C.9.5.6 Communication Message: ATRTime
	C.9.5.7 Communication Message: TargetStatus
	C.9.5.8 Communication Message: TargetAttacked
	C.9.5.9 Communication Message: ChangedStatus
	C.9.5.10 Communication Message: SendPositionsFlag
	C.9.5.11 Communication Message: TaskBenefits
	C.9.5.12 Communication Message: AuctionData

	C.10 Simulation Truth Message Structures
	C.10.1 g_TruthMemory
	C.10.2 InBoxes
	C.10.3 Message Transport Type
	C.10.4 Simulation Truth Message Indices
	C.10.5 Simulation Truth Messages
	C.10.5.1 Simulation Truth Message: VehicleState
	C.10.5.2 Simulation Truth Message: VehicleIsDead
	C.10.5.3 Simulation Truth Message: ChangeVehicleStatus
	C.10.5.4 Simulation Truth Message: WeaponsRelease
	C.10.5.5 Simulation Truth Message: TargetStatus
	C.10.5.6 Simulation Truth Message: TargetState
	C.10.5.7 Simulation Truth Message: VehicleStateSaveData
	C.10.5.8 Simulation Truth Message: TrackList
	C.10.5.9 Simulation Truth Message: ChangeAssignmentFlagSelf

	Bibliography

